Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 119301    DOI: 10.1088/1674-1056/21/11/119301
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Comparing different light-emitting diodes as light sources for long path differential optical absorption spectroscopy NO2 and SO2 measurements

Chan Ka-Lok (陈嘉乐)a b, Ling Liu-Yi (凌六一)a, Andreas Hartlb, Zheng Ni-Na (郑尼娜)a, Gerrit Kuhlmannb, Qin Min (秦敏)a, Sun You-Wen (孙友文)a, Xie Pin-Hua (谢品华)a, Liu Wen-Qing (刘文清)a, Mark Wenigb
a Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
b School of Energy and Environment, City University of Hong Kong, Hong Kong, China
Abstract  In this paper, we present the comparison of different light-emitting diodes (LEDs) as the light source for long path differential optical absorption spectroscopy (LP-DOAS) atmospheric trace gas measurements. In our study, we use a fiber optic design, where high power LEDs used as the light source are coupled into the telescope using a Y shape fiber bundle. Two blue and a ultraviolet (UV) LEDs with different emission wavelength ranges are tested for NO2 and SO2 measurements. The detailed description of the instrumental setup, the NO2 and SO2 retrieval procedure, the error analysis, and the preliminary results from the measurements carried out in Science Island, Hefei, Anhui, China are presented. Our first measurement results show that atmospheric NO2 and SO2 have strong temporal variations in that area and that the measurement accuracy is strongly dependent on the visibility conditions. The measured NO2 and SO2 data are compared to the Ozone Monitoring Instrument (OMI) satellite observations. The results show that the OMI NO2 product underestimates the ground level NO2 by 45%, while the OMI SO2 data are highly influenced by clouds and aerosols, which can lead to large biases in the ground level concentrations. During the experiment, the mixing ratios of the atmospheric NO2 and SO2 vary from 8 ppbv to 36 ppbv and from 3 ppbv to 18 ppbv, respectively.
Keywords:  light-emitting diode      fiber optic designed telescope      NO2 measurement      SO2 measurement  
Received:  30 March 2012      Revised:  23 May 2012      Accepted manuscript online: 
PACS:  93.90.+y (Other topics in geophysical observations, instrumentation, and techniques)  
Fund: Project supported by the National High-Technology Research and Development Program of China (Grant No. 2009AA063006) and the National Natural Science Foundation of China (Grant No. 60808034).
Corresponding Authors:  Xie Pin-Hua     E-mail:  phxie@aiofm.ac.cn

Cite this article: 

Chan Ka-Lok (陈嘉乐), Ling Liu-Yi (凌六一), Andreas Hartl, Zheng Ni-Na (郑尼娜), Gerrit Kuhlmann, Qin Min (秦敏), Sun You-Wen (孙友文), Xie Pin-Hua (谢品华), Liu Wen-Qing (刘文清), Mark Wenig Comparing different light-emitting diodes as light sources for long path differential optical absorption spectroscopy NO2 and SO2 measurements 2012 Chin. Phys. B 21 119301

[1] Platt U, Perner D and Patz H 1979 J. Geophys. Res. 84 6329
[2] Axelsson H, Galle B, Gustavsson K, Ragnarsson P and Rudi M 1990 Dig. Top. Meet. Opt. Remote Sens. Atmos. OSA 4 641
[3] Qin M, Xie P, Liu J, Liu W and Wei Q 2005 Spectroscopy and Spectral Analysis 8 1463
[4] Merten A, Tschritter J and Platt U 2011 Appl. Opt. 50 783
[5] Kern C, Trick S, Rippel B and Platt U 2006 Appl. Opt. 45 2077
[6] Sihler H, Kern C, Pöhler D and Platt U 2009 Opt. Lett. 34 3716
[7] Chan K L, Pöhler D, Kuhlmann G, Hartl A, Platt U and Wenig M O 2012 Atmospheric Measurement Techniques 5 901
[8] Platt U, Meinen J, Pöhler D and Leisner T 2009 Atmospheric Measurement Techniques 2 713
[9] Langridge J M, Ball S M and Jones R L 2006 Analyst 131
[10] Meinen J, Thieser J, Platt U and Leisner T 2010 Atmospheric Chemistry and Physics 10 3901
[11] Thalman R and Volkamer R 2010 Atmospheric Measurement Techniques 3 1797
[12] Crutzen P 1970 Quarterly Journal of the Royal Meteorological Society 96 320
[13] Solomon S, Portmann R W, Sanders R W, Daniel J S, Madsen W, Bartram B and Dutton E G 1999 J. Geophys. Res. 104 12047
[14] Lee D S, Köhler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier J G J, Dentener F J and Bouwman A F 1997 Atmospheric Environment 31 1735
[15] Streets D G, Tsai N Y, Akimoto H and Oka K 2000 Atmospheric Environment 34 4413
[16] Streets D G, Wu Y and Chin M 2006 Geophysical Research Letters 33 L15806
[17] Streets D G, Yu C, Wu Y, Chin M, Zhao Z, Hayasaka T and Shi G 2008 Atmospheric Research 88 174
[18] Streets D G, Yan F, Chin M, Diehl T, Mahowald N, Schultz M, Wild M, Wu Y and Yu C 2009 J. Geophys. Res. 114 D00d18
[19] Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X and Hayasaka T 2007 Atmospheric Chemistry and Physics 7 4419
[20] Lu Z, Streets D G, Zhang Q, Wang S, Carmichael G R, Cheng Y F, Wei C, Chin M, Diehl T and Tan Q 2010 Atmospheric Chemistry and Physics 10 6311
[21] Stutz J and Platt U 1996 Appl. Opt. 35 6041
[22] Kraus S 2005 DOASIS A Framework Design for DOAS (Ph.D. thesis) (Mannheim: University of Mannheim)
[23] Voigt S, Orphal J and Burrows J P 2002 J. Photochem. Photobiol. 149 1
[24] Rothmann L, Barbe A, Benner D C, Brown L, Camy-Peyret C, Carleer M, Chance K, Clerbaux C, Dana V, Devi V, Fayt A, Flaud J M, Gamache R, Goldman A, Jacquemart D, Jucks K, Lafferty W, Mandin J Y, Massie S, Nemtchinov V, Newnham D, Perrin A, Rinsland C, Schroeder J, Smith K, Smith, M, Tang K, Toth R. Auwera J V, Varanasi P and Yoshino K 2003 J. Quant. Spectrosc. Radiat. Transfer 82 5
[25] Volkamer R, Spietz P, Burrows J and Platt U 2005 J. Photochem. Photobiol. 172 35
[26] Voigt S, Orphal J, Bogumil K and Burrows J P 2001 J. Photochem. Photobiol. 143 1
[27] Greenblatt G, Orlando J, Burkholder J and Ravishankara A 1990 J. Geophys. Res. 95 18577
[28] Vandaele A, Simon P, Guilmot M, Carleer M and Colin R 1994 J. Geophys. Res. 99 25599
[29] Meller R and Moortgat G K 2000 J. Geophys. Res. 105 7089
[30] Bucsela E, Celarier E, Wenig M, Gleason J, Veefkind P, Boersma K and Brinksma E 20006 IEEE Transactions on Geoscience and Remote Sensing 44 1245
[31] Krotkov N, Carn S, Krueger A, Bhartia P and Yang K 2006 IEEE Transactions on Geoscience and Remote Sensing 44 1259
[32] Krotkov N, McClure B, Dickerson R, Carn S, Li C, Bhartia P, Yang K, Krueger A, Li Z, Levelt P, Chen H, Wang P and Lu D 2008 J. Geophys. Res. 113 D16S40
[33] Lee C, Martin R V, van Donkelaar A, O'Byrne G, Krotkov N, Richter A, Huey L G and Holloway J S 2009 J. Geophys. Res. 114 D22303
[1] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[2] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[3] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[4] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[5] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[6] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[7] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[8] Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes
Qian Chen(陈潜), Songhe Yang(杨松鹤), Lei Dong(董磊), Siyuan Cai(蔡思源), Jiaju Xu(许家驹), Zongxiang Xu(许宗祥). Chin. Phys. B, 2020, 29(1): 017302.
[9] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[10] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[11] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[12] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[13] Optoelectronic properties analysis of silicon light-emitting diode monolithically integrated in standard CMOS IC
Yanxu Chen(陈彦旭), Dongliang Xu(许栋梁), Kaikai Xu(徐开凯), Ning Zhang(张宁), Siyang Liu(刘斯扬), Jianming Zhao(赵建明), Qian Luo(罗谦), Lukas W. Snyman, Jacobus W. Swart. Chin. Phys. B, 2019, 28(10): 107801.
[14] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[15] Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer
Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Guang Li(李光), Xing-Jun Luo(罗幸君), Hu Wang(汪虎), Jia-Kai Xiao(肖稼凯), Jia-Qi Guo(郭佳琦), Xing-Fu Wang(王幸福), Rui Hao(郝锐), Han-Xiang Yi(易翰翔), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(1): 018503.
No Suggested Reading articles found!