Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110303    DOI: 10.1088/1674-1056/21/11/110303
GENERAL Prev   Next  

New method for calculating the Berry connection in atom–molecule systems

Cui Fu-Cheng (崔傅成), Wu Bao-Jun (吴宝俊 )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In the mean-field theory of atom-molecule systems, where the bosonic atoms combine to form molecules, there is no usual U(1) symmetry, which presents an apparent hurdle for calculating the Berry connection in these systems. We develop a perturbation expansion method of Hannay's angle suitable for calculating the Berry curvature in the atom-molecule systems. With this Berry curvature, the Berry connection can be naturally computed. We use a three-level atom-molecule system to illustrate our results. In particular, with this method, we compute the curvature for Hannay's angle analytically, and compare it to the Berry curvature obtained with the second-quantized model of the same system. An excellent agreement is found, indicating the validity of our method.
Keywords:  Berry phase      nonlinearity      Hannay's angle      mean field theory  
Received:  05 April 2012      Revised:  04 May 2012      Accepted manuscript online: 
PACS:  03.65.Ca (Formalism)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  32.90.+a (Other topics in atomic properties and interactions of atoms with photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10825417).
Corresponding Authors:  Cui Fu-Cheng     E-mail:  cfc9qiqi@hotmail.com

Cite this article: 

Cui Fu-Cheng (崔傅成), Wu Bao-Jun (吴宝俊 ) New method for calculating the Berry connection in atom–molecule systems 2012 Chin. Phys. B 21 110303

[1] Berry M V 1984 Proc. R. Soc. A 392 45
[2] Zhang C W, Dudarev A M and Niu Q 2006 Phys. Rev. Lett. 97 040401
[3] Xiao D, Zhang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[4] Zanarti P and Rasetti M 1999 Phys. Lett. A 264 94
[5] Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902
[6] Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94 140402
[7] Weinberg S 1989 Ann. Phys. 194 336
[8] Heslot A 1985 Phys. Rev. D 31 1341
[9] Kleppner D 2004 Phys. Today 57 12
[10] Wynar R, Freeland R S, Han D J, Ryu C and Heinzen D J 2000 Science 287 1016
[11] Tolra B L, Drag C and Pillet P 2001 Phys. Rev. A 64 061401
[12] Meng S Y, Chen X H, Wu W and Fu L B 2012 Chin. Phys. B 21 040308
[13] Gaubatz U, Rudecki P, Becker M, Schiemann S, Külz M and Bergmann K 1988 Chem. Phys. Lett. 149 463
[14] Kuklinski J R, Gaubatz U, Hioe F T and Bergmann K 1989 Phys. Rev. A 40 6741
[15] Pazy E, Tikhonenkov I, Band Y B, Fleischhauer M and Vardi A 2005 Phys. Rev. Lett. 95 170403
[16] Ling H Y, Maenner P, Zhang W P and Han P 2007 Phys. Rev. A 75 033615
[17] Shapiro E A, Shapiro M, Pe'er A and Ye J 2007 Phys. Rev. A 75 013405
[18] Meng S Y, Fu L B and Liu J 2008 Phys. Rev. A 78 053410
[19] Fu L B and Liu J 2010 Ann. Phys. 325 2425
[20] Cui F C and Wu B 2011 Phys. Rev. A 84 024101
[21] Han P, Maenner P, Zhang W P and Ling H Y 2007 Phys. Rev. Lett. 98 050406
[22] Mackie M, Kowalski R and Javanainen J 2000 Phys. Rev. Lett. 84 3803
[23] Wu B, Zhang Q and Liu J 2011 Phys. Lett. A 375 545
[24] Berry M V 1985 J. Phys. A: Math. Gen. 18 221
[25] Arnold V I, Kozlov V V and Neishtadt A I 2006 Mathematical Aspects of Classical and Celestial Mechanics (3rd edn.) (Berlin: Springer) p. 176
[26] Cary J R 1981 Phys. Rep. 79 129
[27] Borsari I and Caliceti E 1993 J. Phys. A: Math. Gen. 26 3805
[28] Berry M V 1985 J. Phys. A: Math. Gen. 18 15
[1] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[2] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[3] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[4] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[5] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[6] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[7] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[8] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[9] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[10] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[11] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[12] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[13] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[14] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[15] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
No Suggested Reading articles found!