Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 113601    DOI: 10.1088/1674-1056/21/11/113601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Cluster size and substrate temperature affect thin film formation during copper cluster deposition on Si (001) surface

Gong Heng-Feng (龚恒风)a, Lü Wei (吕炜)b, Wang Lu-Min (王鲁闽)c, Li Gong-Ping (李公平 )a
a School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China;
b Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA;
c Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, Michigan 48109, USA
Abstract  The soft deposition of Cu clusters on a Si (001) surface was studied by molecular dynamics simulations. The embedded atom method, the Stillinger-Weber and the Lennar-Jones potentials were used to describe the interactions between the cluster atoms, between the substrate atoms, and between the cluster and the substrate atoms, respectively. The Cu13, Cu55, and Cu147 clusters were investigated at different substrate temperatures. We found that the substrate temperature had a significant effect on the Cu147 cluster. For smaller Cu13 and Cu55 clusters, the substrate temperature in the range of study appeared to have little effect on the mean height of mass center. The clusters showed better degrees of epitaxy at 800 K. With the same substrate temperature, the Cu55 cluster demonstrated the highest degree of epitaxy, followed by Cu147 and then Cu13 clusters. In addition, the Cu55 cluster showed the lowest mean height of mass center. These results suggested that the Cu55 cluster is a better choice for the thin-film formation among the clusters considered. Our studies may provide insight into the formation of desired Cu thin films on a Si substrate.
Keywords:  copper cluster      deposition      epitaxy      diffusion  
Received:  15 March 2012      Revised:  05 June 2012      Accepted manuscript online: 
PACS:  36.40.-c (Atomic and molecular clusters)  
  93.30.Tr (Temperate regions)  
  46.70.-p (Application of continuum mechanics to structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10375028) and the US National Science Foundation Award (Grant No. CMMI-0700048).
Corresponding Authors:  Lü Wei, Li Gong-Ping     E-mail:  weilu@umich.edu; ligp@lzu.edu.cn

Cite this article: 

Gong Heng-Feng (龚恒风), Lü Wei (吕炜), Wang Lu-Min (王鲁闽), Li Gong-Ping (李公平 ) Cluster size and substrate temperature affect thin film formation during copper cluster deposition on Si (001) surface 2012 Chin. Phys. B 21 113601

[1] Miyazaki H, Hinode K, Homma Y and Mukai K 1987 Jan. J. Appl. Phys. 48 329
[2] Saranin A A, Zotov A V, Utas O A, Kotlyar V G and Wang Y L 2009 Surf. Sci. 603 2874
[3] Ferretti N, Balkaya B, Vollmer A, Neeb M and Eberhardt 2007 J. Electron. Spectrosc. Relat. Phenom. 124 156
[4] Hong S Q 1991 J. Appl. Phys. 70 3655
[5] Röder H, Hahn E, Brune H, Bucher J P and Kern K 1993 Nature 366 141
[6] Pascual J I, Méndez J, Gómez-Herrero J, Baró A M, Garcia N and Binh V T 1993 Phys. Rev. Lett. 71 1852
[7] Ullmann R, Will T and Kolb D M 1993 Chem. Phys. Lett. 209 238
[8] Vandoni G, Félix C, Monot R, Buttet J and Harbich W 1994 Chem. Phys. Lett. 229 51
[9] Vandamme N, Verschoren G, Depuydt A, Cannaerts M, Bouwen W, Lievens P, Silverans R E and Haesendonck C V 2001 Appl. Phys. A 72 S177
[10] Kellogg G L 1994 Surf. Sci. Rep. 21 1
[11] Echigoya J, Satoh T and Ohmi T 1993 Acta Metall. Mater. 41 229
[12] Liu C S and Chen L J 1993 J. Appl. Phys. 74 5501
[13] Chen L J, Liu C S and Lai J B 2004 Mater. Sci. Semicond. Process. 7 143
[14] Vaz C A F, Steinmuller S J, Moutafis C, Bland J A C and Babkevich A Y 2007 Surf. Sci. 601 1377
[15] Gao X X, Jia Y H, Li G P, Cho S J and Kim H 2011 Chin. Phys. Lett. 28 033601
[16] Alamanova D, Grigoryan V G and Springborg M 2008 Surf. Sci. 602 1413
[17] Hou Q, Hou M, Bardotti L, Prével B, Mélinon P and Perez A 2000 Phys. Rev. B 62 2825
[18] Pauwels B, Van Tendeloo G, Bouwen W, Thei Kuhn L, Lievens P, Lei H and Hou M 2000 Phys. Rev. B 62 10383
[19] Lee S C, Yu B D, Kim D Y and Hwang N M 2002 J. Crys. Growth 242 463
[20] Lei H L, Hou Q and Hou M 2000 J. Phys.: Condens. Matter 12 8387
[21] Chen H, Hagiwara I, Huang T and Zhang D 2005 Synthetic Metals 155 652
[22] Palacios F J, Iñiguez M P, López M J and Alonso J A 1999 Phys. Rev. B 60 2908
[23] Resende F J and Costa B V 2001 Surf. Sci. 481 54
[24] Jiménez-Sáez J C, Pérez-Martin A M C and Jiménez-Rodriguez J J 2004 Appl. Surf. Sci. 238 223
[25] Roland C and Gimer G H 1992 Phys. Rev. B 46 13428
[26] Foils S M, Bakes M I and Daw M S 1986 Phys. Rev. B 33 7983
[27] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[28] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[29] Kornich G V, Betz G, Zaporojtchenko V, Bazhin A I and Faupel F 2005 Nucl. Instr. Meth. Phys.Res. B 227 261
[30] Smith R W and Srolovitz D J 1996 J. Appl. Phys. 79 1448
[31] Dong L, Smith R W and Srolovitz D J 1996 J. Appl. Phys. 80 5682
[32] Dorfman S, Mundim K C, Fuks D, Berner A, Ellis D E and Humbeeck J V 2001 Mater. Sci. Eng. C 15 191
[33] Berner A, Duks D, Ellis D E, Mundim K and Dorfman S 1999 Appl. Surf. Sci. 144-145 677
[34] Guan P, Mckenzie D R and Pailthorpe B A 1996 J. Phys.: Condens. Matter 8 8753
[35] Pan X D, Gai Z G and Li G P 2008 Chin. Phys. B 17 1674
[36] Mackay A L 1962 Acta Cryst. 15 916
[37] Zhang M L, Li G P and Guo X Y 2005 J. Atom. Mol. Phys. 22 0515
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[5] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[6] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[7] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[8] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[9] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[12] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[13] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[14] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[15] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
No Suggested Reading articles found!