Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117309    DOI: 10.1088/1674-1056/21/11/117309
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin Hall and spin Nernst effects in graphene with intrinsic and Rashba spin-orbit interactions

Zhu Guo-Bao (朱国宝 )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Spin Hall and spin Nernst effects in graphene are studied based on Green's function formalism. We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in Kane-Mele model with various structures. When both intrinsic and Rashba spin-orbit interactions are present, their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level. When Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling, a weak kink in the conductance appears. The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances. When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling, the divergence becomes more obvious.
Keywords:  graphene      spin-orbit interaction      Green's function theory  
Received:  30 March 2012      Revised:  04 June 2012      Accepted manuscript online: 
PACS:  73.43.-f (Quantum Hall effects)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.61.Wp (Fullerenes and related materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10934010), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB921502 and 2012CB821305).
Corresponding Authors:  Zhu Guo-Bao     E-mail:  zhuguobao@gmail.com

Cite this article: 

Zhu Guo-Bao (朱国宝 ) Spin Hall and spin Nernst effects in graphene with intrinsic and Rashba spin-orbit interactions 2012 Chin. Phys. B 21 117309

[1] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[2] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[3] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[4] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[5] Kimura T and Otani Y 2007 Phys. Rev. Lett. 99 196604
[6] Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nature Phys. 6 448
[7] Berry M V 1984 Proc. R. Soc. London Ser. B 392 45
[8] Sundaram G and Niu Q 1999 Phys. Rev. B 59 14915
[9] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Meakawa S and Saitoh E 2008 Nature 455 778
[10] Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P and Myers R C 2010 Nature Mater. 9 898
[11] Xiao D, Yao Y, Fang Z and Niu Q 2006 Phys. Rev. Lett. 97 026603
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[13] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[14] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[15] Dedkov Y S, Fonin M, Rüdiger U and Laubscha C 2008 Phys. Rev. Lett. 100 107602
[16] Varykhalov A, Sanchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
[17] Castro Neto A H and Guinea F 2009 Phys. Rev. Lett. 103 026804
[18] Imura K, Kuramoto Y and Nomura K 2009 Phys. Rev. B 80 085119
[19] Yamakage A, Imura K, Cayssol J and Kuramoto Y 2011 Phys. Rev. B 83 125401
[20] Onoda S, Sugimoto N and Nagaosa N 2006 Phys. Rev. Lett. 97 126602
[21] Onoda S, Sugimoto N and Nagaosa N 2008 Phys. Rev. B 77 165103
[22] Kovalev A A, Tserkovnyak Y, Vyborny K and Sinova J 2009 Phys. Rev. B 79 195129
[23] Kovalev A A, Sinova J and Tserkovnyak Y 2010 Phys. Rev. Lett. 105 036601
[24] Smrcka L and Streda P 1977 J. Phys. C 10 2153
[25] Dyrdal A, Dugaev V K and Barnas J 2009 Phys. Rev. B 80 155444
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!