Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 117303    DOI: 10.1088/1674-1056/21/11/117303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

On the surface plasmon wave propagation along single metal wire

Zhong Ren-Bin (钟任斌), Liu Wei-Hao (刘维浩), Zhou Jun (周俊), Liu Sheng-Gang (刘盛纲 )
Terahertz Science and Technology Research Centre, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Recently, the single metal wire (SW) becomes attractive for its potential applications in terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transmission line, its study seems far from enough. Many important transmission behaviours have not been explained satisfactorily from the viewpoint of physics. In this paper, making use of the modified Drude model (MDM) based on the Sommerfeld theory, the transmission behaviours of SPPs along SW are systemically investigated theoretically. Some important physical phenomena such as the mode transformation, the lifetime of radiative mode and the resonance frequency are revealed, and their mechanisms are explored. The results obtained in the paper will facilitate the general understanding of the features and the physical essence of the SPP transmission, not only for SW itself but also for other SPP transmission lines.
Keywords:  surface plasmon      single metal wire      wave propagation  
Received:  23 February 2012      Revised:  02 May 2012      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  84.40.Az (Waveguides, transmission lines, striplines)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
Fund: Project supported by the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20100185110022), the National Basic Research Program of China (Grant No. 2007CB310401), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. ZYGX2011J037).
Corresponding Authors:  Liu Sheng-Gang     E-mail:  liusg@uestc.edu.cn

Cite this article: 

Zhong Ren-Bin (钟任斌), Liu Wei-Hao (刘维浩), Zhou Jun (周俊), Liu Sheng-Gang (刘盛纲 ) On the surface plasmon wave propagation along single metal wire 2012 Chin. Phys. B 21 117303

[1] Wang K L and Mittleman D M 2004 Nature 432 376
[2] Cao Q and Jahns J 2005 Opt. Exp. 13 18
[3] Wang K and Mittleman D M 2006 Phys. Rev. Lett. 96 157401
[4] Pfeiffer C A, Economou E N and Ngai K L 1974 Phys. Rev. B 10 3038
[5] Valk N C J van der and Planken P C M 2005 Appl. Phys. Lett. 87 071106
[6] Wächter M, Nagel M and Kurz H 2005 Opt. Exp. 13 10815
[7] Yang P F, Gu Y and Gong Q H 2008 Chin. Phys. B 17 3880
[8] Wang J Q, Liang H M, Fang L, Li M, Niu X Y and Du J L 2009 Chin. Phys. B 18 4870
[9] Monacelli B and Boreman G 2003 Phys. Rev. B 68 155427
[10] Drude P 1900 Zur Elektronentheorie der Metalle Annalen der Physik 306 566 (in German)
[11] Maier S A 2007 Plasmonics: Fundamentals and Applications (1st ed.) (Springer-Verlag)
[12] Ashcroft N W and Mermin N D 1976 Solid State Physics (Thomson Learning Asia Pte Ltd.)
[13] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[14] Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill)
[15] Schröter U and Dereux A 2001 Phys. Rev. B 64 125420
[16] Stockman M I 2004 Phys. Rev. Lett. 93 137404
[17] Reather H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (New York: Springer-Verlag)
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[7] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[8] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[9] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[10] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[11] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[12] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[13] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[14] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!