Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110203    DOI: 10.1088/1674-1056/21/11/110203
GENERAL Prev   Next  

A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure

Wei Han-Yu (魏含玉)a b, Xia Tie-Cheng (夏铁成 )a
a Department of Mathematics, Shanghai University, Shanghai 200444, China;
b Department of Mathematics and Information Science, Zhoukou Normal University, Zhoukou 466001, China
Abstract  Based on differential forms and exterior derivatives of fractional orders, Wu first presented the generalized Tu formula to construct the generalized Hamiltonian structure of the fractional soliton equation. We apply the generalized Tu formula to calculate the fractional Dirac soliton equation hierarchy and its Hamiltonian structure. The method can be generalized to the other fractional soliton hierarchy.
Keywords:  fractional calculus      generalized Tu formula      Dirac soliton hierarchy      Hamiltonian structure  
Received:  19 April 2012      Revised:  21 May 2012      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11271008, 61072147, and 11071159 ) and the Shanghai Leading Academic Discipline Project, China (Grant No. J50101).
Corresponding Authors:  Wei Han-Yu     E-mail:  weihanyu8207@163.com

Cite this article: 

Wei Han-Yu (魏含玉), Xia Tie-Cheng (夏铁成 ) A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure 2012 Chin. Phys. B 21 110203

[1] Zaslavsky G M 2002 Phys. Rep. 371 461
[2] Tarasov V E and Zaslavsky G M 2005 Physica A 354 249
[3] Riewe F 1997 Phys. Rev. E 55 3581
[4] Tarasov V E 2005 Phys. Rev. E 71 011102
[5] Tarasov V E 2005 J. Phys. Conf. Ser. 7 17
[6] Nigmatullin R 1986 Phys. Status Solidi b 133 425
[7] Wu G C 2011 Commun. Frac. Calc. 2 27
[8] Zhang J and You F C 2011 Commun. Frac. Calc. 2 36
[9] Liu J C and Hou G L 2010 Chin. Phys. B 19 110203
[10] Zhang J F, Pei Q Y and Zhang X L 2011 Chin. Phys. B 20 080503
[11] Zhou S B, Lin X R and Li H 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 1533
[12] Qi D L, Wang Q and Yang J 2011 Chin. Phys. B 20 100505
[13] Ge H X, Liu Y Q and Cheng R J 2012 Chin. Phys. B 21 010206
[14] Baleanu D, Guvenc Z B and Machado Tenreiro J A 2010 New Trends in Nanotechnology and Fractional Calculus Applications (New York: Springer) pp. 151-180
[15] Podlubny I 1999 IEEE Transactions on Automatic Control 44 208
[16] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives Theory and Applications (New York: Gordon and Breach Science Publishers) pp. 1-196
[17] Zaslavsky G M 2005 Hamiltonian Chaos and Fractional Dynamics (Oxford: Oxford University Press) pp. 113-160
[18] Riewe F 1996 Phys. Rev. E 53 1890
[19] Riewe F 1997 Phys. Rev. E 55 3581
[20] Frederico G S F and Delfim F M T 2008 Nonlinear. Dyn. 53 215
[21] Baleanu D and Agrawal O P 2006 J. Phys. 56 1087
[22] Mohamed A E H and Baleanu D 2009 Nonlinear. Dyn. 58 385
[23] Agrawal O P 2006 J. Phys. A: Math. Theor. 39 10375
[24] Jumarie G 2007 Chaos Soliton. Fract. 32 969
[25] El-Nabulsi R A and Torres D F M 2008 J. Math. Phys. 49 053521
[26] El-Nabulsi R A 2010 Fractals 18 185
[27] Tu G Z 1989 J. Math. Phys. 30 330
[28] Ma W X 1992 Chinese Annals of Mathematics Series A 18 115 (in Chinese)
[29] Zhang Y F and Zhang H Q 2002 J. Math. Phys. 43 466
[30] Xia T C, You F C and Chen D Y 2005 Chaos Soliton. Fract. 23 1911
[31] Ma W X and Chen M 2006 J. Phys. A: Math. Gen. 39 10787
[32] Ma W X, Xu X X and Zhang Y F 2006 J. Math. Phys. 47 053501
[33] Wu G C and Zhang S 2011 Phys. Lett. A 375 3659
[34] Davis H D 1936 The Theory of Linear Operators (Bloomington: Principia Press) pp. 1-96
[35] Ross B 1977 Math. Mag. 50 115
[36] Ben Adda F 1997 J. Fractional Calculus 11 21
[37] Ben Adda F 2001 J. Math Anal. Appl. 263 721
[38] Cottrill-Shepherd K and Naber M 2001 J. Math. Phys. 42 2203
[39] Kazbekov K K 2005 Vladikavkaz. Mat. Zh. 7 41
[40] Li C P and Deng W H 2007 Appl. Math. Comput. 187 777
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[3] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[4] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[5] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[6] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[7] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[8] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[9] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[10] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[11] Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)
Wang Xin-Zeng (王新赠), Dong Huan-He (董焕河). Chin. Phys. B, 2015, 24(8): 080201.
[12] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[13] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[14] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[15] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
No Suggested Reading articles found!