Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100303    DOI: 10.1088/1674-1056/21/10/100303
GENERAL Prev   Next  

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method

He Ying (何英), Tao Qiu-Gong (陶求功), Yang Yan-Fang (杨艳芳)
Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  We study the eigenvalues of the rotating Morse potential by using the quantization condition from the analytical transfer matrix (ATM) method. A hierarchy of supersymmetric partner potentials is obtained with Pekeris approximation, which can be used to calculate the energies of higher rotational states from the energies of lower states. The energies of rotational states of the hydrogen molecule are calculated by the ATM condition, and comparison of the results with those from the hypervirial perturbation method reveals that the accuracy of the approximate expression of Pekeris for the eigenvalues of the rotating Morse potential can be improved substantially in the framework of supersymmetric quantum mechanics.
Keywords:  rotating Morse potential      analytical transfer matrix (ATM)      Pekeris approximation      supersymmetry quantum mechanics (SUSY QM)  
Received:  22 February 2012      Revised:  19 March 2012      Accepted manuscript online: 
PACS:  03.65.Sq (Semiclassical theories and applications)  
  03.65.Ge (Solutions of wave equations: bound states)  
  11.30.Pb (Supersymmetry)  
Fund: Project supported by the Fund front the Science and Technology Committee of Shanghai Municipality, China (Grant No. 11ZR1412300) and the National Natural Science Foundation of China (Grant No. 61108010).
Corresponding Authors:  He Ying     E-mail:  heying@staff.shu.edu.cn

Cite this article: 

He Ying (何英), Tao Qiu-Gong (陶求功), Yang Yan-Fang (杨艳芳) The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method 2012 Chin. Phys. B 21 100303

[1] Sun H 2005 Phys. Lett. A 338 309
[2] Morse P M 1929 Phys. Rev. 34 57
[3] Dong S H, Lemus R and Frank A 2002 Int. J. Quantum Phys. 86 433
[4] Pekeris C L 1934 Phys. Rev. 45 98
[5] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[6] Imbo T D and Sukhatme U P 1985 Phys. Rev. Lett. 54 2184
[7] Bag M, Panja M M, Dutt R and Varshni Y P 1992 Phys. Rev. A 46 6059
[8] Filho E D and Ricotta R M 2000 Phys. Lett. A 269 269
[9] Morales D A 2004 Chem. Phys. Lett. 394 68
[10] Killingbeck J P, Grosjean A and Jolicard G 2002 J. Chem. Phys. 116 447
[11] He Y, Cao Z Q and Shen Q S 2004 Phys. Lett. A 326 315
[12] Yin C, Cao Z Q and Shen Q S 2010 Ann. Phys. 325 528
[13] Cao Z Q, Liu Q, Shen Q S, Dou X M, Chen Y L and Ozaki Y 2001 Phys. Rev. A 63 054103
[14] He Y, Zhang F M, Yang Y F and Li C F 2010 Chin. Phys. B 19 040306
[15] Ou Y C, Cao Z Q and Shen Q S 2004 J. Chem. Phys. 121 8175
[16] Fricke S H, Balantekin A B and Hatchell P J 1988 Phys. Rev. A 37 2797
[17] Cooper F, Khare A and Sukhatme U 2001 Supersymmetry in Quantum Mechanics (Singapore: World Scientific)
[18] Morales D A 1989 Chem. Phys. Lett. 161 253
[19] Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer-Verlag)
[20] Pauling L and Wilson E B 1985 Quantum Mechanics (New York: Dover)
[21] Killingbeck J P, Grosjean A and Jolicard G 2002 J. Chem. Phys. 116 447
[1] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[2] Chaotic state as an output of vacuum state evolving in diffusion channel and generation of displaced chaotic state for quantum controlling
Feng Chen(陈锋), Wei Xiong(熊伟), Bao-Long Fang(方保龙) , and Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(12): 124202.
[3] Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮). Chin. Phys. B, 2019, 28(10): 100502.
[4] Momentum-space crystal in narrow-line cooling of 87Sr
Jian-Xin Han(韩建新), Ben-Quan Lu(卢本全), Mo-Juan Yin(尹默娟), Ye-Bing Wang(王叶兵), Qin-Fang Xu(徐琴芳), Xiao-Tong Lu(卢晓同), Hong Chang(常宏). Chin. Phys. B, 2019, 28(1): 013701.
[5] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[6] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[7] Fractal dynamics in the ionization of helium Rydberg atoms
Xiulan Xu(徐秀兰), Yanhui Zhang(张延惠), Xiangji Cai(蔡祥吉), Guopeng Zhao(赵国鹏), Lisha Kang(康丽莎). Chin. Phys. B, 2016, 25(11): 110301.
[8] Testing the validity of the Ehrenfest theorem beyond simple static systems: Caldirola-Kanai oscillator driven by a time-dependent force
Salim Medjber, Hacene Bekkar, Salah Menouar, Jeong Ryeol Choi. Chin. Phys. B, 2016, 25(8): 080301.
[9] Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal
Xiu-Rong Ma(马秀荣), Yu-Qing Liang(梁裕卿), Song Wang(王松), Shuang-Gen Zhang(张双根), Yun-Long Shan(单云龙). Chin. Phys. B, 2016, 25(7): 070302.
[10] Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field
Shao-Hao Cheng(程绍昊), De-Hua Wang(王德华), Zhao-Hang Chen(陈召杭), Qiang Chen(陈强). Chin. Phys. B, 2016, 25(6): 063201.
[11] Quantum and semiclassical studies on photodetachment cross sections of H- in a harmonic potential
Hai-Jun Zhao(赵海军), Wei-Long Liu(刘伟龙), Meng-Li Du(杜孟利). Chin. Phys. B, 2016, 25(3): 033203.
[12] Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime
Ji-Qing Fu(伏吉庆), Peng-Cheng Du(杜鹏程), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2016, 25(1): 010302.
[13] Photodetachment of H- near a hard wall with arbitrary laser polarization direction
Azmat Iqbal, A. Afaq. Chin. Phys. B, 2015, 24(8): 083201.
[14] Photodetachment microscopy of H- in the magnetic field near different dielectric surfaces
Tang Tian-Tian (唐田田), Zhang Min (张敏), Zhang Chao-Min (张朝民). Chin. Phys. B, 2015, 24(6): 063401.
[15] Realization of quantum Fourier transform over ZN
Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超). Chin. Phys. B, 2014, 23(2): 020306.
No Suggested Reading articles found!