Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090501    DOI: 10.1088/1674-1056/21/9/090501
RAPID COMMUNICATION Prev   Next  

Failure of free energy relation under non-Markovian heat bath temperature change

Cao Liang (曹亮)a, Michael Crossb, Zheng Zhi-Gang (郑志刚)a
a Department of Physics, Beijing Normal University, Beijing 100875, China;
b Department of Physics, California Institute of Technology, Pasadena CA 91125, USA
Abstract  We investigate the free energy relation for a system contacting with a non-Markovian heat bath and find that the validity of the relation sensitively depends on the non-Markovian memory effect, which is especially related to the initial preparation effect. This memory effect drives the statistical distribution of the system out of the initial preparation, even if the system starts from an equilibrium state. This leads to the violation of the free energy relation. A possible way of eliminating this memory effect is proposed.
Keywords:  free energy relation      non-Markovian heat bath      initial preparation effect  
Received:  20 March 2012      Revised:  24 May 2012      Accepted manuscript online: 
PACS:  05.20.-y (Classical statistical mechanics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875011 and 11075016), the National Basic Research Program of China (Grant No. 2007CB814805), the Fundamental Research Funds for the Central Universities of China (Grant No. 201001), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003110007).
Corresponding Authors:  Zheng Zhi-Gang     E-mail:  zgzheng@bnu.edu.cn

Cite this article: 

Cao Liang (曹亮), Michael Cross, Zheng Zhi-Gang (郑志刚) Failure of free energy relation under non-Markovian heat bath temperature change 2012 Chin. Phys. B 21 090501

[1] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[2] Jarzynski C 1997 Phys. Rev. E 56 5018
[3] Kubo R 1966 Rep. Prog. Phys. 29 255
[4] Kubo R, Toda M and Hashitsume N 1997 Statistical Physics II: Nonequilibrium Statistical Mechanics (2nd edn.) (Beijing: Springer-Verlag) pp. 7, 33
[5] Hänggi P 1977 Z. Phys. B 26 85
[6] Hänggi P and Thomas H Phys. Rep. 88 207
[7] Hänggi P and Jung P 1995 Adv. Chem. Phys. 89 239
[8] Mai T and Dhar A 2007 Phys. Rev. E 75 061101
[9] Speck T and Seifert U 2007 J. Stat. Mech. L09002
[1] Collective motion of polar active particles on a sphere
Yi Chen(陈奕), Jun Huang(黄竣), Fan-Hua Meng(孟繁华), Teng-Chao Li(李腾超), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2021, 30(10): 100510.
[2] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[3] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友). Chin. Phys. B, 2021, 30(1): 018703.
[4] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[5] Hexagonal arrangement of phospholipids in bilayer membranes
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智). Chin. Phys. B, 2020, 29(3): 030505.
[6] Enhancement of water self-diffusion at super-hydrophilic surface with ordered water
Xiao-Meng Yu(于晓萌), Chong-Hai Qi(齐崇海), Chun-Lei Wang(王春雷). Chin. Phys. B, 2018, 27(6): 060101.
[7] Optimizing the atom types of proteins through iterative knowledge-based potentials
Xin-Xiang Wang(汪心享), Sheng-You Huang(黄胜友). Chin. Phys. B, 2018, 27(2): 020503.
[8] Moderate point: Balanced entropy and enthalpy contributions in soft matter
Baoji He(贺宝记), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(3): 030506.
[9] Modeling the capability of penetrating a jammed crowd to eliminate freezing transition
Mohammed Mahmod Shuaib. Chin. Phys. B, 2016, 25(5): 050501.
[10] Accurate treatments of electrostatics for computer simulations of biological systems: A brief survey of developments and existing problems
Yi Sha-Sha (衣沙沙), Pan Cong (潘聪), Hu Zhong-Han (胡中汉). Chin. Phys. B, 2015, 24(12): 120201.
[11] Performance characteristics of low-dissipative generalized Carnot cycles with external leakage losses
Huang Chuan-Kun (黄传昆), Guo Jun-Cheng (郭君诚), Chen Jin-Can (陈金灿). Chin. Phys. B, 2015, 24(11): 110506.
[12] Nonequilibrium thermodynamics and fluctuation relations for small systems
Cao Liang (曹亮), Ke Pu (柯谱), Qiao Li-Yan (乔丽颜), Zheng Zhi-Gang (郑志刚). Chin. Phys. B, 2014, 23(7): 070501.
[13] Evolution of IPv6 Internet topology with unusual sudden changes
Ai Jun (艾均), Zhao Hai (赵海), Kathleen M. Carleyb, Su Zhan (苏湛), Li Hui (李辉). Chin. Phys. B, 2013, 22(7): 078902.
[14] Incomplete nonextensive statistics and the zeroth law of thermodynamics
Huang Zhi-Fu (黄志福), Ou Cong-Jie (欧聪杰), Chen Jin-Can (陈金灿). Chin. Phys. B, 2013, 22(4): 040501.
[15] Quantum mechanical version of classical Liouville theorem
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030501.
No Suggested Reading articles found!