Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084207    DOI: 10.1088/1674-1056/21/8/084207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Intersubband absorption with difference-frequency generation in GaAs asymmetric quantum wells

Cao Xiao-Long (曹小龙)a c, Li Zhong-Yang (李忠洋)b, Yao Jian-Quan (姚建铨)a c, Wang Yu-Ye (王与烨)a c, Zhu Neng-Nian (朱能念)a c, Zhong Kai (钟凯)a b, Xu De-Gang (徐德刚 )a b
a College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072, China;
b Institute of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China;
c Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin 300072, China
Abstract  An asymmetric quantum well (AQW) is designed to emit terahertz (THz) waves by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.5As. The characteristics of absorption coefficients are analysed under the parabolic and non-parabolic energy-band conditions in detail. We find that the absorption coefficients vary with the two pump optical intensities, and they reach the maxima when the pump wavelengths are given as λ p1=9.70 μm and λ p2=10.64 μm respectively. Compared with non-parabolic condition, the total absorption coefficient under parabolic condition shows a blue shift, which is due to the increase in the energy difference between the ground and excited states. By adjusting the two pump optical intensities, the wave vector phase-matching condition inside the AQW is satisfied.
Keywords:  asymmetric quantum wells      absorption coefficient      THz-wave      phase-matching  
Received:  12 August 2011      Revised:  15 January 2012      Accepted manuscript online: 
PACS:  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  78.67.De (Quantum wells)  
  42.65.-k (Nonlinear optics)  
  61.72.uj (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60801017, 61172010, 61101058, and 61107086) and the Fund from the Science and Technology Committee of Tianjin, China (Grant No. 11JCYBJC01100).
Corresponding Authors:  Cao Xiao-Long     E-mail:  caoxiaolong63@126.com

Cite this article: 

Cao Xiao-Long (曹小龙), Li Zhong-Yang (李忠洋), Yao Jian-Quan (姚建铨), Wang Yu-Ye (王与烨), Zhu Neng-Nian (朱能念), Zhong Kai (钟凯), Xu De-Gang (徐德刚 ) Intersubband absorption with difference-frequency generation in GaAs asymmetric quantum wells 2012 Chin. Phys. B 21 084207

[1] Johnson M B, Whittaker D M, Corchia A, Davies A G and Linfield E H 2002 Phys. Rev. B 65 165301
[2] Schmuttenmaer C A 2004 Chem. Rev. 104 1759b
[3] Xie X, Dai J and Zhang X C 2006 Phys. Rev. Lett. 96 075505
[4] Qi C C and Cheng Z H 2009 Chin. Phys. Lett. 26 064201
[5] Bahk Y M, Park H R, Ahn K J, Kim H S, Ahn Y H, Kim D S, Bravo-Abad J, Martin-Moreno L and Garcia-Vidal F J 2011 Phys. Rev. Lett. 106 013902
[6] Li J S and Li X J 2009 Acta Phys. Sin. 58 5805 (in Chinese)
[7] Apollonov V V, Shakir Y A and Gribenyukov A I 2002 J. Phys. D: Appl. Phys. 35 1477
[8] Molter D, Theuer M and Beigang R 2009 Opt. Express 17 6623
[9] Staus C M, Kuech T F and Caughan L M 2010 Opt. Express 18 2332
[10] Geng Y, Tan X, Li X and Yao J 2010 Appl. Phys. B: Laser Opt. 99 181
[11] Zhong K, Yao J Q, Xu D G, Zhang H Y and Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese)
[12] Sirtori C, Capasso F, Faist J, Pfeiffer L N and West K W 1994 Appl. Phys. Lett. 65 445
[13] Hiroshima T and Lang R, 1986 Appl. Phys. Lett. 49 456
[14] Dupont E, Wasilewski Z R and Liu H C. 2006 IEEE J. Electron. 42 1157
[15] Cao X L, Wang Y Y, Xu D G, Zhong K, Li J H, Li Z Y, Zhu N N and Yao J Q 2012 Chin. Phys. Lett. 29 014207
[1] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[2] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[3] Origin of anomalous enhancement of the absorption coefficient in a PN junction
Xiansheng Tang(唐先胜), Baoan Sun(孙保安), Chen Yue(岳琛), Xinxin Li(李欣欣), Junyang Zhang(张珺玚), Zhen Deng(邓震), Chunhua Du(杜春花), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Yang Jiang(江洋), Weihua Wang(汪卫华), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097804.
[4] Enhanced absorption process in the thin active region of GaAs based p-i-n structure
Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097803.
[5] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[6] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[7] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[8] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[9] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
I Kabir, S A Mahmood. Chin. Phys. B, 2019, 28(12): 128801.
[10] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[11] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[12] Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core
Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua. Chin. Phys. B, 2017, 26(7): 073202.
[13] Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot
Ahmed S Jbara, Zulkafli Othaman, M A Saeed. Chin. Phys. B, 2016, 25(5): 057801.
[14] Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer
Liu Qiang (刘强), Huang Hong-Hua (黄宏华), Wang Yao (王尧), Wang Gui-Shi (王贵师), Cao Zhen-Song (曹振松), Liu Kun (刘锟), Chen Wei-Dong (陈卫东), Gao Xiao-Ming (高晓明). Chin. Phys. B, 2014, 23(6): 064205.
[15] Monitoring the reaction between AlCl3 and o-xylene by using terahertz spectroscopy
Jin Wu-Jun (金武军), Li Tao (李涛), Zhao Kun (赵昆), Zhao Hui (赵卉). Chin. Phys. B, 2013, 22(11): 118701.
No Suggested Reading articles found!