Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087105    DOI: 10.1088/1674-1056/21/8/087105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Defect properties of CuCrO2: A density functional theory calculation

Fang Zhi-Jie (方志杰)a b, Zhu Ji-Zhen (朱基珍)a, Zhou Jiang (周江)a, Mo Man (莫曼)a
a Department of Information and Computation of Science, Guangxi University of Technology, Liuzhou 545006, China;
b State Key Laboratory for Superlattics and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China
Abstract  Using the first-principles methods, we study the formation energetics properties of intrinsic defects, and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO2. Intrinsic defects, some typical acceptor-type, and donor-type extrinsic defects in their relevant charge state are considered. By systematically calculating the formation energies and transition energy, the results of calculation show that, Vm Cu, Oi, and Om Cu are the relevant intrinsic defects in CuCrO2; among these intrinsic defects, Vm Cu is the most efficient acceptor in CuCrO2. It finds that all the donor-type extrinsic defects are difficult to induce n-conductivity in CuCrO2 because of their deep transition energy level. For all the acceptor-type extrinsic defects, substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO2. Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO2.
Keywords:  first-principle      defects      formation energy  
Received:  17 January 2012      Revised:  01 March 2012      Accepted manuscript online: 
PACS:  71.55.-i (Impurity and defect levels)  
  61.72.J- (Point defects and defect clusters)  
  64.70.kg (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11147195), the Science Fund from the Guangxi Experiment Centre of Science and Technology (Grant No. LGZXKF201204), and the Science Plan Projects of the Education Department of Guangxi Zhuang Autonomous Region (Grant No. 200103YB102).
Corresponding Authors:  Fang Zhi-Jie     E-mail:  nnfang@semi.ac.cn

Cite this article: 

Fang Zhi-Jie (方志杰), Zhu Ji-Zhen (朱基珍), Zhou Jiang (周江), Mo Man (莫曼) Defect properties of CuCrO2: A density functional theory calculation 2012 Chin. Phys. B 21 087105

[1] Lewis B G and Paine D C 2000 MRS Bull. 20 22
[2] Wang Z G, Zhang Y, Wen Y H and Zhu Z Z 2010 Acta Phys. Sin. 59 2051 (in Chinese)
[3] Wang B, Sun H Q, Guo Z Y and Gao X Q 2010 Acta Phys. Sin. 59 1212 (in Chinese)
[4] Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H and Hosono H 1997 Nature 389 939
[5] Zhang F C, Zhang W H, Dong J T and Zhang Z Y 2011 Acta Phys. Sin. 60 127503 (in Chinese)
[6] Nie X, Wei S H and Zhang S B 2002 Phys. Rev. Lett. 88 066405
[7] Yanagi H, Inoue S, Ueda K, Kawazoe H and Hosono H 2000 J. Appl. Phys. 88 4159
[8] Yanagi H, Kawazoe H, Kudo A, Yasukawa M and Hosono H 2000 J. Electroceram. 4 427
[9] Katayama Y H, Koyanagi T, Funashima H, Harima H and Yanase A 2003 Solid State Commun. 126 135
[10] Koyanagi T, Harima H, Yanase A and Katayama Y H 2003 J. Phys. Chem. Solid 64 144
[11] Fang Z J, Shi L J and Liu Y H 2008 Chin. Phys. B 17 4279
[12] Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M and Hirano M 2001 J. Appl. Phys. 89 1790
[13] Da L, Fang X D, Deng Z H, Zhou S H and Tao R H 2007 J. Phys. D: Appl. Phys. 40 4910
[14] Aronld T, Payne D J, Bourlange A, Hu J P and Egdell R G 2009 Phys. Rev. B 79 075102
[15] Nagarajan R, Draeseke A D, Sleight A W and Tate J 2001 J. Appl. Phys. 89 8022
[16] Blouchl P E 1994 Phys. Rev. B 50 17953
[17] Kresse G and Joubert J 1999 Phys. Rev. B 59 1758
[18] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[19] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[22] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[23] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[24] Murnaghan F D and Natl P 1944 Acad. Sci. USA 30 244
[25] Crottaz O, Kubel F and Schmid H 1996 J. Sod. Chem. 122 247
[26] Zhang S B, Wei S H, Zunger A and Katayama Y H 1998 Phys. Rev. B 57 964
[27] Mahapatra S and Shivashankar S 2003 Chem. Vap. Deposition 9 238
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[11] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[14] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!