Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084206    DOI: 10.1088/1674-1056/21/8/084206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Preparation of steady-state entanglement via a laser-excited resonant interaction

Cheng Guang-Ling (程广玲), Chen Ai-Xi (陈爱喜), Geng Jun (耿珺), Zhong Wen-Xue (钟文学), Deng Li (邓黎)
Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
Abstract  In this paper we propose a scheme, in which two-mode entanglement in a steady state is produced by using two lasers to resonantly drive a single four-level atom embedded inside a two-mode optical cavity. In this scheme, atomic coherence induced by a classical laser plays an important role in the process of preparing the entangled state. With the coupling of a strong control field, direct two-photon transition is generated and the relatively weak pump field induces the parametric interaction between two photons, which makes them entangled with each other. By numerical calculation, we find that the degree of entanglement depends strongly on the Rabi frequencies of the classical laser fields and the cavity losses.
Keywords:  two-mode entanglement      atomic coherence      resonant interaction  
Received:  03 January 2012      Revised:  08 February 2012      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11047182, 11165008, and 11065007), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20114BAB202001 and 2010GQW0011), and the Science Foundation of East China Jiaotong University, China (Grant Nos. 10JC03 and 10JC06).
Corresponding Authors:  Chen Ai-Xi     E-mail:  aixichen@ecjtu.jx.cn

Cite this article: 

Cheng Guang-Ling (程广玲), Chen Ai-Xi (陈爱喜), Geng Jun (耿珺), Zhong Wen-Xue (钟文学), Deng Li (邓黎) Preparation of steady-state entanglement via a laser-excited resonant interaction 2012 Chin. Phys. B 21 084206

[1] Braunstein S L and Loock P 2005 Rev. Mod. Phys. 77 513
[2] Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869
[3] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[4] Koike S, Takahashi H, Yonezawa H, Takei N, Braunstein S L, Aoki T and Furusawa A 2006 Phys. Rev. Lett. 96 060504
[5] Liu J M, Li J and Guo G C 2002 Chin. Phys. 11 339
[6] Wu Y and Deng L 2004 Opt. Lett. 29 1144
[7] Sintayehu T 2012 Chin. Phys. B 21 014204
[8] Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 69 063803
[9] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[10] Zhang Y, Wang H, Li X, Jing J, Xie C and Peng K 2000 Phys. Rev. A 62 023813
[11] Pereira S F, Ou Z Y and Kimble H J 2000 Phys. Rev. A 62 042311
[12] Yang J, Zhao T M, Zhang H, Yang T, Bao X H and Pan J W 2011 Chin. Phys. B 20 024202
[13] Li G X, Tan H T and Macovei M 2007 Phys. Rev. A 76 53827
[14] Du S W, Oh E, Wen J M and Rubin M H 2007 Phys. Rev. A 76 013803
[15] Cheng G L, Hu X M, Zhong W X and Li Q 2008 Phys. Rev. A 78 033811
[16] Zhu Y Z, Hu X M, Wang F and Li J Y 2010 Chin. Phys. Lett. 27 044210
[17] Xiong H, Scully M O and Zubairy M S 2005 Phys. Rev. Lett. 94 023601
[18] Tan H T, Zhu S Y and Zubairy M S 2005 Phys. Rev. A 72 022305
[19] Qamar S, Ghafoor F, Hillery M and Zubairy M S 2008 Phys. Rev. A 77 062308
[20] Qamar S, Amri M A and Zubairy M S 2009 Phys. Rev. A 80 033818
[21] Fang A P, Chen Y L, Li F L, Li H R and Zhang P 2010 Phys. Rev. A 81 012323
[22] Zhou L, Xiong H and Zubairy M S 2006 Phys. Rev. A 74 022321
[23] Kiffner M, Zubairy M S, Evers J and Keitel C H 2007 Phys. Rev. A 75 033816
[24] Lü X Y, Liu J B, Si L G and Yang X X 2008 J. Phys. B 41 035501
[25] Hao X Y, Lü X Y, Liu L and Yang X X 2009 J. Phys. B 42 105502
[26] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[27] Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
[28] Harris S E and Hau L V 1999 Phys. Rev. Lett. 82 4611
[29] Wu Y and Deng L 2004 Phys Rev. Lett. 93 143904
[30] Wu Y and Deng L 2004 Opt. Lett. 29 2064
[31] Yang W X, Hou J M and Lee R K 2008 Phys. Rev. A 77 033838
[32] Wu Y, Payne M G, Hagley E W and Deng L 2004 Opt. Lett. 29 2294
[33] Chen A X, Wang Z P and Deng L 2009 Mod. Phys. Lett. B 23 2123
[34] Wu Y and Yang X 2005 Opt. Lett. 30 311
[35] Wu Y and Yang X 2004 Phys. Rev. A 70 053818
[36] Frogley M D, Dynes J F, Beck M, Faist J and Phillips C C 2006 Nature Materials 5 175
[37] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) Chap.2
[38] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[39] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[40] James D F V 2000 Fortschr. Phys. 48 823
[1] Dynamically controlled optical nonreciprocity of a double-ladder system with spontaneously generated coherence in moving atomic optical lattice
Nuo Ba(巴诺), Xiang-Yao Wu(吴向尧), Dong-Fei Li(李东飞), Dan Wang(王丹), Jin-You Fei(费金有), Lei Wang(王磊). Chin. Phys. B, 2017, 26(5): 054207.
[2] Continuously tunable sub-half-wavelength localization via coherent control of spontaneous emission
Wang Fei (王飞), Gong Cheng (龚成), Tan Xin-Yu (谭新玉), Shi Wen-Xing (石文星 ). Chin. Phys. B, 2012, 21(11): 114206.
[3] Generation of any superposition of coherent states along a straight line via resonant atom-cavity interaction
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2010, 19(4): 044203.
[4] Decoherence-immune generation of highly entangled states for two atoms
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2010, 19(4): 044204.
[5] Generation of entanglement molecules via weak coherent field in cavity QED
Su Wan-Jun(苏万钧), Yang Zhen-Biao(杨贞标), and Wu Huai-Zhi(吴怀志). Chin. Phys. B, 2009, 18(2): 593-596.
[6] Generation of four-photon W state via cavity QED
Zhong Zhi-Rong(钟志荣). Chin. Phys. B, 2008, 17(9): 3217-3219.
[7] Generation of entangled coherent states for two cavity modes via resonant interaction with a V-type three-level atom
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2008, 17(6): 2143-2146.
[8] Generation of various multiatom entangled graph states via resonant interactions
Dong Ping(董萍), Zhang Li-Hua (章礼华), and Cao Zhuo-Liang (曹卓良). Chin. Phys. B, 2008, 17(6): 1979-1984.
[9] Coherence-enhanced entanglement between two atoms at high temperature
Hu Yao-Hua(胡要花), Fang Mao-Fa(方卯发), Jiang Chun-Lei(姜春蕾), and Zeng Ke(曾可). Chin. Phys. B, 2008, 17(5): 1784-1790.
[10] Implementation of n-qubit Deutsch--Jozsa algorithm using resonant interaction in cavity QED
Wang Hong-Fu(王洪福) and Zhang Shou(张寿). Chin. Phys. B, 2008, 17(4): 1165-1173.
[11] Scheme for the implementation of 1→3 optimal phase-covariant quantum cloning in ion-trap systems
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), Huang Zhi-Ping(黄志平), and Xie Hong(谢鸿). Chin. Phys. B, 2008, 17(3): 967-970.
[12] Atomic coherence control on the entanglement of two atoms in two-photon processes
Hu Yao-Hua(胡要花), Fang Mao-Fa(方卯发), and Wu Qin(吴琴). Chin. Phys. B, 2007, 16(8): 2407-2414.
[13] Preparation of W state in resonant bimodal cavity quantum electrodynamics
Jia Lian-Jun(贾连军) and Yang Zhen-Biao(杨贞标). Chin. Phys. B, 2007, 16(10): 2980-2983.
[14] Nonclassical properties in the resonant interaction of a three level Λ-type atom with two-mode field in coherent state
Wu Huai-Zhi(吴怀志) and Su Wan-Jun(苏万钧). Chin. Phys. B, 2007, 16(1): 106-110.
[15] Preparation of entangled atomic states through simultaneous nonresonant atom--field interaction
Chen Mei-Feng(陈美锋). Chin. Phys. B, 2006, 15(12): 2847-2849.
No Suggested Reading articles found!