Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087302    DOI: 10.1088/1674-1056/21/8/087302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and optical properties of CdS/CdZnS nanocrystals

A. John Petera b, Chang Woo Leea
a Department of Chemical Engineering and Green Energy Center, College of Engineering, Kyung Hee University, 1 Seochun, Gihung, Yongin, Gyeonggi 446-701, S. Korea;
b Department of Physics, Govt. Arts College, Melur, Madurai-62510, India
Abstract  Cd1-xZnxS nanocrystals are prepared by co-precipitation method with different atomic fractions of Zn and their textures, structural transformations, and optical properties with increasing x value in Cd1-xZnxS are studied from scanning electron micrograph, electron diffraction pattern, and absorption spectra respectively. Quantum confinement in a strained CdS/Cd1-xZnxS related nanodot with various Zn content values is investigated theoretically. Binding energies on exciton bound CdS/CdxZn1-xS quantum dot are computed, considering the internal electric field induced by the spontaneous and piezoelectric polarizations and thereby interband emission energy is calculated as a function of dot radius. The optical band gap from the UV absorption spectrum is compared with the interband emission energy computed theoretically. Our results show that the average diameter of composite nanoparticles ranges from 3 nm to 6 nm. X-ray diffraction pattern shows that all the peaks shift towards the higher diffracting angles with the increase of Zn content. The lattice constant gradually decreases as Zn content increases. The strong absorption edge shifts towards the lower wavelength region and hence the band gap of the films increases as Zn content increases. The values of the absorption edge are found to shift towards the shorter wave length region and hence the direct band gap energy varies from 2.5 eV for CdS film and 3.5 eV for ZnS film. Our numerical results are in good agreement with the experimental results.
Keywords:  quantum dots      quasicrystals      semiconductor  
Received:  17 November 2011      Revised:  08 April 2012      Accepted manuscript online: 
PACS:  73.21.Fg (Quantum wells)  
  71.55.-i (Impurity and defect levels)  
Corresponding Authors:  A. John Peter     E-mail:  a.john.peter@gmail.com

Cite this article: 

A. John Peter, Chang Woo Lee Electronic and optical properties of CdS/CdZnS nanocrystals 2012 Chin. Phys. B 21 087302

[1] Yamaguchi T, Yamamoto Y, Tanaka T, Demizu Y and Yoshida A 1996 Thin Solid Films 375 281
[2] Yamaguchi T, Matsufusa J and Yoshida A 1992 Jpn. J. Appl. Phys. 3 L703
[3] Walter T, Ruckh M, Velthaus K O and Schock H W 1992 Proceedings of the 11th EC Photovoltaic Solar Energy Conference p. 124
[4] Manaselyan A and Chakraborty T 2010 Nanotechnology 21 355401
[5] Karar N, Singh F and Mehta B R 2004 J. Appl. Phys. 95 656
[6] Haranath D, Bhalla N, Chandra H, Rashmi, Kar M and Kishore R 2004 J. Appl. Phys. 96 6700
[7] Jung D R, Son D, Kim J, Kim C and Park B 2008 Appl. Phys. Lett. 93 163118
[8] Wang W, Huang F, Xia Y and Wang A 2008 Journal of Luminescence 128 610
[9] Xiao Q and Xiao C 2008 Appl. Surf. Sci. 254 6432
[10] Sethi R, Kumar L, Sharma P K and Pandey A C 2010 Nanoscale Research Letters 5 96
[11] Kim S Y, Kim D S, Ahn B T and Im H B 1993 J. Mater. Sci. Mater. Electron. 4 178
[12] B J Wu B J, Cheng H, Guha S, Hasse M A, De Puydt J M, Meis-Haugen G and Qiu J 1993 Appl. Phys. Lett. 63 2935
[13] Bailey R E and Nie S J 2003 J. Am. Chem. Soc. 125 7100
[14] Zhong X, Feng Y, Knoll W and Han M 2003 J. Am. Chem. Soc. 125 13559
[15] Cizeron J and Pileni M P 1995 J. Phys. Chem. 99 17410
[16] Lee J H, Song W C, Yi J S, Yang K J, Han W D, Hwang J 2003 Thin Solid Films 431 349
[17] Wu B J, Cheng H, Guha S, Haase M A, Depuydt J and Meishaugen Q G 1993 J. Appl. Phys. Lett. 63 2935
[18] Sharma P K, Dutta R K, Kumar M, Singh P K and Pandey A C 2009 J. Luminescence 129 605
[19] Keshari A K and Pandey A C 2009 J. Appl. Phys. 10 5064315
[20] Yoshikawa A, Okamoto T, Yasuda H, Yamaga S and Kasai H 1990 J. Crystal Growth 101 86
[21] Yamaguchi K and Sato S 1984 Jpn. J. Appl. Phys. 23 126
[22] Karasawa T, Ahkawa K and Mitsuyum T 1991 J. Appl. Phys. 69 3226
[23] Rossetti R, Hull R, Gibson J M and Brus L E 1985 J. Chem. Phys. 82 552
[24] Karar N, Jayaswal M, Halder S K and Chandra H 2007 J. Alloys Compd. 436 61
[25] Padam G K, Malhotra G L and Rao S U M 1988 J. Appl. Phys. 63 770
[26] Hwak H L 1983 J. Phys. D: Appl. Phys. D16 2367
[27] Eason R 2007 Pulsed Laser Deposition of Thin Films (New Jersey: Wiley)
[28] Bir G L and Pikus E 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: Wiley)
[29] Singh J 1996 Optoelectronics: An Introduction to Materials and Devices (New Delhi: Tata McGraw Hill)
[30] Chuang S L 1995 Physics of Optoelectronic Devices (New York: John Wiley & Sons)
[31] Shi J J and Gan Z Z 2003 J. Appl. Phys. 94 407
[32] Park K C and Im H B 1998 Journal Electrochemical Society Solid State Science and Technology 135 793
[33] Xing C, Zhang Y, Yan W, et al. 2006 Science International Journal of Hydrop Energy 31 2018
[34] Padam G K, Malhotra G L and Rao S U M 1988 J. Appl. Phys. 63 770
[35] Jana S, Maity R, Das S, Mitra M K and Chattopadhyay K K 2007 Sci. Phys. E 39 109
[36] Padam G K, Rao S K M and Malhotra G L 1998 Proc. 27th IEEE Photovoltaic Specialists Conference (New York: IEEE) II P. 1591
[37] Rameshwar N. Bhargava, D. Haranath and Adosh Mehta 2008 J. Korean Phys. Soc. 53 2847
[38] Koga T, Nitta J, Takayanagi H and Datta S 2002 Phys. Rev. Lett. 88 126601
[39] Vladimir A, Fonoberov and Alexander A Balandin 2004 Appl. Phys. Lett. 85 5971
[40] Mohanta D, Narayanan S S, Pal S K and Raychaudhuri A K 2009 J. Experimental Nanoscience 4 177
[41] Wang X, Qu L, Zhang J, Peng X and Xiao M 2003 Nano Lett. 3 1103
[42] Anil T V, Menon C S, Jayachandran K P and Shree Krishna K K 2006 J. Mater. Sci. 41 8013
[43] Srinivasa Rao B and Paul H S 1969 Applied Scientific Research 20 251
[44] Ben Afia S and Belmabrouk H 2008 Thin Solid Films 516 1608
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[4] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[10] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[11] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[12] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[13] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[14] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[15] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
No Suggested Reading articles found!