Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 078202    DOI: 10.1088/1674-1056/21/7/078202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical study of structure and analytic potential energy function for the ground state of PO2 molecule

Zeng Hui(曾晖) and Zhao Jun(赵俊)
School of Physical Science and Technology, Yangtze University, Jingzhou 434023, China
Abstract  In this paper, the energy, the equilibrium geometry, and the harmonic frequency of the ground electronic state of PO2 are computed using B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO2 molecule. It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2A1. The equilibrium parameters of the structure are RP-O=0.1465 nm, d=19.218 eV. The bent vibrational frequency ν1=386 cm-1, the symmetric stretching frequency ν2=1095 cm-1, and the asymmetric stretching frequency ν3=1333 cm-1 are obtained. On the basis of atomic and molecular reaction statics, the reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is first derived by using the many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.
Keywords:  PO2      Murrell--Sorbie function      many-body expansion theory      potential energy curve  
Received:  11 October 2011      Revised:  12 January 2012      Accepted manuscript online: 
PACS:  82.80.-d (Chemical analysis and related physical methods of analysis)  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  33.15.Fm (Bond strengths, dissociation energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11047176 ) and the Research Foundation of Education Bureau of Hubei Province, China (Grant Nos. Q20111305 and B20101303).
Corresponding Authors:  Zhao Jun     E-mail:  zhaojun@yangtzeu.edu.cn

Cite this article: 

Zeng Hui(曾晖) and Zhao Jun(赵俊) Theoretical study of structure and analytic potential energy function for the ground state of PO2 molecule 2012 Chin. Phys. B 21 078202

[1] Hirst D M 2001 J. Chem. Phys. 115 9320
[2] Horst M A, Schatz G C and Harding L B 1996 J. Chem. Phys. 105 558
[3] Liu Y J, Huang M B, Zhou X G, Li Q X and Yu X Q 2002 J. Chem. Phys. 117 6519
[4] Kawaguchi K, Saito S, Hirota E and Ohashi N 1985 J. Chem. Phys. 82 4893
[5] Hamilton P A 1987 J. Chem. Phys. 86 33
[6] Andrews L and Withnall R 1988 J. Am. Chem. Soc. 110 5605
[7] Withnall R and Andrews L 1988 J. Phys. Chem. 92 4610
[8] Mielke Z, McCluskey M and Andrews L 1990 Chem. Phys. Lett. 165 46
[9] McCluskey M and Andrews L 1991 J. Phys. Chem. 95 2988
[10] Knight Jr L B, Jones G C, King G M, Babb R M and McKinley A J 1995 J. Chem. Phys. 103 497
[11] Lohr L L 1984 J. Phys. Chem. 88 5569
[12] Lohr L L and Boehm R C 1987 J. Phys. Chem. 91 3203
[13] Kabbadj Y and Lievin J 1989 Phys. Scripta 40 259
[14] Jarrett-Sprague S A, Hillier I H and Gould I R 1990 Chem. Phys. 140 27
[15] Xu C, de Beer E and Neumark D M 1996 J. Chem. Phys. 104 2749
[16] Cai Z L, Hirsch G and Buenker R J 1996 Chem. Phys. Lett. 255 350
[17] Zhu Z H 1996 Atomic and Molecular Reaction Statics (Beijing: Science Press) (in Chinese)
[18] Frisch M J, Trucks G W, Schlegel H B, et al. 2003 GAUSSIAN 03, Revision B.02, Gaussian Inc., Pittsburgh, USA
[19] Zhu Z H and Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) (in Chinese)
[20] Sorbie K S and Murrell J N 1975 Mol. Phys. 29 1387
[21] Yang Z J, Gao Q H, Li J, Linghu R F, Guo Y D, Cheng X L, Zhu Z H and Yang X D 2011 Chin. Phys. B 20 053102
[22] Shi D H, Liu H, Sun J F, Zhu Z L and Liu Y F 2010 Acta Phys. Sin. 59 227 (in Chinese)
[23] Zhao J, Cheng X L, Zhu Z H and Yang X D 2009 Acta Phys. Sin. 58 5280 (in Chinese)
[24] Linghu R F, Li J, Lü B, Xu M and Yang X D 2009 Acta Phys. Sin. 58 185 (in Chinese)
[25] Xu G L, Lü W J, Liu Y F, Zhu Z L, Zhang X Z and Sun J F 2009 Acta Phys. Sin. 58 3058 (in Chinese)
[1] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[2] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[3] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[4] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[5] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[6] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[7] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[8] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[9] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[10] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[11] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[12] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[13] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Xie An-Dong (谢安东), Yan Bing (闫冰), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(4): 043401.
[14] Potential energy curves and spectroscopic properties of X2Σ+ and A2Π states of 13C14N
Liao Jian-Wen (廖建文), Yang Chuan-Lu (杨传路). Chin. Phys. B, 2014, 23(7): 073401.
[15] Multi-reference configuration-interaction calculations on multiply charged ions of carbon monosulfide
Yan Bing (闫冰), Zhang Yu-Juan (张玉娟). Chin. Phys. B, 2013, 22(2): 023103.
No Suggested Reading articles found!