Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070505    DOI: 10.1088/1674-1056/21/7/070505
GENERAL Prev   Next  

A lattice hydrodynamical model considering turning capability

Tian Huan-Huan(田欢欢)a)b) and Xue Yu(薛郁) a)c)†
a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
b College of Physics Science and Engineering, Yulin Normal University, Yulin 537000, China;
c Institute of Physics Science and Engineering, Guangxi University, Nanning 530004, China
Abstract  A new two-dimensional lattice hydrodynamic model considering the turning capability of cars is proposed. Based on this model, the stability condition for this new model is obtained by using linear stability analysis. Near the critical point, the modified KdV equation is deduced by using the nonlinear theory. The results of numerical simulation indicate that the critical point ac increases with the increase of the fraction p of northbound cars which continue to move along the positive y direction for c=0.3, but decreases with the increase of p for c=0.7. The results also indicate that the cars moving along only one direction (eastbound or northbound) are most stable.
Keywords:  modified KdV equation      traffic flow      lattice hydrodynamic model  
Received:  20 November 2011      Revised:  13 February 2012      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  02.60.Cb (Numerical simulation; solution of equations)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10865001, 11047003, 11172164, and 11162019) and the Youth Foundation of the Yulin Normal University of China (Grant No. 2011YJQN01).
Corresponding Authors:  Xue Yu     E-mail:  yuxuegxu@gxu.edu.cn

Cite this article: 

Tian Huan-Huan(田欢欢) and Xue Yu(薛郁) A lattice hydrodynamical model considering turning capability 2012 Chin. Phys. B 21 070505

[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2] Helbing D 2001 Rev. Mod. Phys. 73 1067
[3] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[4] Kerner B S and Konhäuser P 1993 Phys. Rev. E 48 2335
[5] Kurtze D A and Hong D C 1995 Phys. Rev. E 52 218
[6] Komatsu T and Sasa S 1995 Phys. Rev. E 52 5574
[7] Muramatsu M and Nagatani T 1999 Phys. Rev. E 60 180
[8] Nagatani T 1998 Physica A 261 599
[9] Nagatani T 1999 Physica A 264 581
[10] Nagatani T 1999 Phys. Rev. E 59 4857
[11] Nagatani T 1999 Physica A 265 297
[12] Nagatani T 1999 Physica A 272 592
[13] Xue Y 2004 Acta Phys. Sin. 53 25 (in Chinese)
[14] Ge H X, Dai S Q, Xue Y and Dong L Y 2005 Phys. Rev. E 71 066119
[15] Ge H X and Cheng R J 2008 Physica A 387 6952
[16] Zhu H B 2009 Chin. Phys. B 18 1322
[17] Tang T Q, Huang H J and Xue Y 2006 Acta Phys. Sin. 55 4026 (in Chinese)
[18] Peng G H 2010 Acta Phys. Sin. 59 108 (in Chinese)
[19] Sun D H, Tian C and Liu W N 2010 Chin. Phys. B 19 080514
[20] Peng G H, Cai X H, Liu C Q and Cao B F 2011 Phys. Lett. A 375 2153
[21] Sun D H and Tian C 2011 Acta Phys. Sin. 60 068901 (in Chinese)
[22] Tian J F, Jia B, Li X G and Gao Z Y 2010 Chin. Phys. B 19 040303
[23] Tian H H, He H D, Wei Y Y, Xue Y and Lu W Z 2009 Physica A 388 2895
[24] Xue Y, Tian H H, He H D, Lu W Z and Wei Y F 2009 Eur. Phys. J. B 69 289
[25] Wen J, Tian H H and Xue Y 2010 Acta Phys. Sin. 59 3817 (in Chinese)
[26] Cuesta J A, Martines F C, Molera J M and Sanchez A 1993 Phys. Rev. E 48 R4175
[27] Nagatani T 1994 J. Phys. Soc. Jpn. 63 1228
[28] Nagatani T 1995 J. Phys. Soc. Jpn. 64 1421
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[4] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[5] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[6] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[7] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[8] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[9] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[10] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[11] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[12] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[13] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[14] A new traffic model on compulsive lane-changing caused by off-ramp
Xiao-He Liu(刘小禾), Hung-Tang Ko(柯鸿堂), Ming-Min Guo(郭明旻), Zheng Wu(吴正). Chin. Phys. B, 2016, 25(4): 048901.
[15] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
No Suggested Reading articles found!