Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 068504    DOI: 10.1088/1674-1056/21/6/068504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel high-voltage light punch-through carrier stored trench bipolar transistor with buried p-layer

Zhang Jin-Ping(张金平), Li Ze-Hong(李泽宏), Zhang Bo(张波), and Li Zhao-Ji(李肇基)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A novel high-voltage light punch-through (LPT) carrier stored trench bipolar transistor (CSTBT) with buried p-layer (BP) is proposed in this paper. Since the negative charges in the BP layer modulate the bulk electric field distribution, the electric field peaks both at the junction of the p base/n-type carrier stored (N-CS) layer and the corners of the trench gates are reduced, and new electric field peaks appear at the junction of the BP layer/N- drift region. As a result, the overall electric field in the N- drift region is enhanced and the proposed structure improves the breakdown voltage (BV) significantly compared with the LPT CSTBT. Furthermore, the proposed structure breaks the limitation of the doping concentration of the N-CS layer (NN -CS) to the BV, and hence a higher NN-CS can be used for the proposed LPT BP-CSTBT structure and a lower on-state voltage drop (Vce(sat)) can be obtained with almost constant BV. The results show that with a BP layer doping concentration of NBP=7 × 1015 cm-3, a thickness of LBP=2.5 μm, and a width of WBP=5 μm, the BV of the proposed LPT BP-CSTBT increases from 1859 V to 1862 V, with NN-CS increasing from 5 × 1015 cm-3 to 2.5 × 1016 cm-3. However, with the same N--drift region thickness of 150 μm and NN-CS, the BV of the CSTBT decreases from 1598 V to 247 V. Meanwhile, the Vce(sat) of the proposed LPT BP-CSTBT structure decreases from 1.78 V to 1.45 V with NN-CS increasing from 5 × 1015 cm-3 to 2.5 × 1016 cm-3.
Keywords:  carrier stored trench bipolar transistor      light punch-through      buried p-layer      breakdown voltage  
Received:  15 November 2011      Revised:  02 March 2012      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Pq (Bipolar transistors)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Science and Technology Major Project of China (Grant No. 2011ZX02504-003) and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2011J024).
Corresponding Authors:  Zhang Jin-Ping     E-mail:  jinpingzhang@uestc.edu.cn

Cite this article: 

Zhang Jin-Ping(张金平), Li Ze-Hong(李泽宏), Zhang Bo(张波), and Li Zhao-Ji(李肇基) A novel high-voltage light punch-through carrier stored trench bipolar transistor with buried p-layer 2012 Chin. Phys. B 21 068504

[1] Li Z H, Qian M L and Zhang B 2009 Proc. IEEE 21st International Symposium on Power Semiconductor Devices & IC's June 14-18, 2009, Barcelona, Spain p. 124
[2] Antoniou M, Udrea F, Bauer F and Nistor I 2011 IEEE Trans. Electron Dev. 58 769
[3] Vobecky J 2006 Proc. 27th International Conference on Microelectronics, May 16-19, 2010, NIŠ, Serbia p. 67
[4] Kopta A, Rahimo M, Eicher S and Schlapbach U 2006 Proc. IEEE 18th International Symposium on Power Semiconductor Devices & IC's, June 4-8, 2006, Naples, Italy p. 1
[5] Ranstad P and Nee H 2011 IEEE Trans. Power Electronics 26 260
[6] Onozawa Y, Otsuki M, Iwamuro N, Miyashita S, Miyasaka T, Seki Y and Matsumoto T 2007 IEEE Trans. Industry Appl. 43 513
[7] Zhang F, Shi L, Li C, Wang W, Yu W and Sun Xi 2006 IEEE Trans. Plasma Sci. 34 1026
[8] Iwamoto H, Haruguchi H, Tomomatsu Y, Donlon J F and Motto E R 2002 IEEE Trans. Industry Appl. 38 168
[9] Luo X R, Yao G L, Chen X, Wang Q, Ge R and Florin U 2011 Chin. Phys. B 20 028501
[10] Hu S D, Wu L J, Zhou J L, Gan P, Zhang B and Li Z J 2012 Chin. Phys. B 21 027101
[11] Laska T, Munzer M, Pfirsch F, Schaeffer C and Schmidt T 2000 Proc. IEEE 12nd International Symposium on Power Semiconductor Devices & IC's May 22-25, 2000, Toulouse, France p. 355
[12] Oyama K, Arai T, Saitou K, Masuda K and Mori M 2004 Proc. IEEE 16th International Symposium on Power Semiconductor Devices & IC's, May 24-27, 2004, Milan, Italy p. 111
[13] Mori M, Oyama K, Arai T, Sakano J, Nishimura Y, Masuda K, Saito K, Uchino Y and Homma H 2007 IEEE Trans. Electron Dev. 54 1515
[14] Onozawa Y, Ozaki D, Nakano H, Yamazaki T and Fujishima N 2011 Proc. IEEE 23th International Symposium on Power Semiconductor Devices & IC's, May 23-26, 2011, San Diego, USA p. 52
[15] Takahashi T, Tomomatsu Y and Sato K 2008 Proc. IEEE 20th International Symposium on Power Semiconductor Devices & IC's, May 18-22, 2008, Florida, USA p. 72.
[16] Mori M, Oyama K, Kohno Y, Sakano J, Uruno J, Ishizaka K and Kawase D 2007 IEEE Trans. Electron Dev. 54 2011
[17] Nakamura K, Sadamatsu K, Oya D, Shigeoka H and Hatade K 2010 Proc. IEEE 22th International Symposium on Power Semiconductor Devices & IC's, June 6-10, 2010, Hiroshima, Japan p. 387
[18] Haraguchi Y, Honda S, Nakata1 K, Narazaki A and Terasaki Y 2011 Proc. IEEE 23th International Symposium on Power Semiconductor Devices & IC's, May 23-26, 2011, San Diego, USA p. 68
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[6] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[7] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[8] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[9] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[10] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[11] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[12] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[13] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[14] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[15] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
No Suggested Reading articles found!