Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 068402    DOI: 10.1088/1674-1056/21/6/068402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Research of sine waveguide slow-wave structure for a 220-GHz backward wave oscillator

Xu Xiong(许雄), Wei Yan-Yu(魏彦玉), Shen Fei(沈飞), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Duan Zhao-Yun(段兆云), and Gong Yu-Bin(宫玉彬)
National Key Laboratory of Science and Technology on Vacuum Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A watt-class backward wave oscillator is proposed, using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz. Firstly, the dispersion curve of the sine waveguide is calculated, then, the oscillation frequency and operating voltage of the device are predicted and the circuit transmission loss is calculated. Finally, the particle-in-cell simulation method is used to forecast its radiation performance. The results show that this novel backward wave oscillator can produce over 1-W continuous wave power output in a frequency range from 210 GHz to 230 GHz. Therefore, it will be considered as a very promising high-power millimeter-wave to terahertz-wave radiation source.
Keywords:  backward wave oscillator      sine waveguide      slow-wave structure      terahertz  
Received:  04 November 2011      Revised:  07 December 2011      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  52.59.-f (Intense particle beams and radiation sources)  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
Fund: Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61125103), the National Natural Science Foundation of China (Grant Nos. 60971038 and 60971031), and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2009Z003).
Corresponding Authors:  Wei Yan-Yu     E-mail:  yywei@uestc.edu.cn

Cite this article: 

Xu Xiong(许雄), Wei Yan-Yu(魏彦玉), Shen Fei(沈飞), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Duan Zhao-Yun(段兆云), and Gong Yu-Bin(宫玉彬) Research of sine waveguide slow-wave structure for a 220-GHz backward wave oscillator 2012 Chin. Phys. B 21 068402

[1] Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R and Williams G P 2002 Nature 420 153
[2] Booske J H 2008 Phys. Plasmas 15 055502
[3] Feng J J, Hu Y F, Cai J, Wu X P and Tang Y 2010 Vacuum Electronics 52 27 (in Chinese)
[4] Feng J J, Hu Y F, Cai J, Ma S Y and Wu X P 2010 Proceedings of IEEE International Vacuum Electronics Conference, May 18-20, 2010 Monterey, USA, p. 501
[5] Feng J J, Cai J, Hu Y F, Qu B, Li H Y and Tang Y 2009 Journal of China Academy of Electronics and Information Technology 4 249 (in Chinese)
[6] Cai J 2006 ''Study on W-band Folded Waveguide Slow Wave Structure'' Ph. D. Dissertation (Shandong: Shandong University) (in Chinese)
[7] Cai J, Feng J J, Liao F J, Huang M G and Wu X P 2006 Acta Electron. Sin. 34 2342 (in Chinese)
[8] Hu Y F, Feng J J, Cai J, Du Y H, Tang Y and Wu X P 2011 Proceedings of IEEE International Vacuum Electronics Conference, February 21-24, 2011 Bangalore, India, p. 21
[9] Qi C C and Ouyang Z B 2011 Acta Phys. Sin. 60 090704 (in Chinese)
[10] Xu A, Wang W X, Wei Y Y and Gong Y B 2009 Chin. Phys. B 18 810
[11] Liao M L, Wei Y Y, He J, Gong Y B, Wang W X and Park G S 2009 Chin. Phys. Lett. 26 114207
[12] He J, Wei Y Y, Gong Y B, Duan Z Y and Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese)
[13] Zhang C Q, Gong Y B, Wei Y Y and Wang W X 2010 Acta Phys. Sin. 59 6653 (in Chinese)
[14] He J, Wei Y Y, Gong Y B, Duan Z Y, Lu Z G and Wang W X 2010 Acta Phys. Sin. 59 6659 (in Chinese)
[15] Zhong K, Yao J Q, Xu D G, Zhang H Y and Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese)
[16] Wu Y, Jin X, Ma Q S, Li Z H, Ju B Q, Su C, Xu Z and Tang C X 2011 Acta Phys. Sin. 60 084101 (in Chinese)
[17] Ma Q S, Jin X, Xu M, Li Z H and Wu Y 2011 Acta Phys. Sin. 60 105201 (in Chinese)
[18] Tang Y and Feng J J 2008 Proceedings of China-UK/Europe Workshop on Millimetre Waves and Terahertz Technologies, October 20-22, 2008 Chengdu, China, p. 38
[19] Mineo M and Paoloni C 2010 IEEE Trans. Electron Dev. 57 1481
[20] Xu X, Wei Y Y, Shen F, Duan Z Y, Gong Y B, Yin H R and Wang W X 2011 IEEE Electron Dev. Lett. 32 1152
[21] Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O and Bhattacharjee S 2005 IEEE Trans. Electron Dev. 52 685
[22] Ansoft Corp., Ansoft HFSS User's Referenceewline http://www.ansoft.com.cn/
[23] Shin Y M, So J K, Han S T, Jang K H, Park G S, Kim J H and Chang S S 2006 Appl. Phys. Lett. 88 091916.
[24] Shin Y M, Barnett L R, Gamzina D, Luhmann N C Jr, Field M and Borwick R 2009 Appl. Phys. Lett. 95 181505
[25] Shin Y M and Barnett L R 2008 Appl. Phys. Lett. 92 091501
[26] Mineo M and Paoloni C 2010 IEEE Trans. Electron Dev. 57 3169
[27] CST Corp., CST MWS Tutorialsewline http://www.cstchina.cn/
[28] CST Corp., CST PS Tutorials http://www.cstchina.cn/
[29] Tsimring S E 2007 Electron Beams and Microwave Vacuum Electronics, (Hoboken, New Jersey: John Wiley & Sons) pp. 277-284
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!