Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 060503    DOI: 10.1088/1674-1056/21/6/060503
GENERAL Prev   Next  

One-way hash function construction based on the spatiotemporal chaotic system

Luo Yu-Ling(罗玉玲) and Du Ming-Hui(杜明辉)
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China
Abstract  Based on the spatiotemporal chaotic system, a novel algorithm for constructing a one-way hash function is proposed and analysed. The message is divided into fixed length blocks. Each message block is processed by the hash compression function in parallel. The hash compression is constructed based on the spatiotemporal chaos. In each message block, the ASCII code and its position in the whole message block chain constitute the initial conditions and the key of the hash compression function. The final hash value is generated by further compressing the mixed result of all the hash compression values. Theoretic analyses and numerical simulations show that the proposed algorithm presents high sensitivity to the message and key, good statistical properties, and strong collision resistance.
Keywords:  hash value      spatiotemporal chaos      hash compression function  
Received:  15 November 2011      Revised:  06 December 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Ra (Coupled map lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U0735004) and the Natural Science Foundation of Guangdong Province, China (Grant No. 05006593).
Corresponding Authors:  Luo Yu-Ling     E-mail:  luo.yuling@mail.scut.edu.cn

Cite this article: 

Luo Yu-Ling(罗玉玲) and Du Ming-Hui(杜明辉) One-way hash function construction based on the spatiotemporal chaotic system 2012 Chin. Phys. B 21 060503

[1] Liu H J and Wang X Y 2010 Comput. Math. Appl. 59 3320
[2] Cheddad A, Condell J, Curran K and McKevitt P 2010 Opt. Commun. 283 879
[3] Liu H J and Wang X Y 2011 Opt. Commun. 284 3895
[4] Wang X Y and Teng L 2011 Nonlinear Dynamics 67 365
[5] Wang X Y and Jin C Q 2012 Opt. Commun. 285 412
[6] Grzybowski JoseM V, Rafikov M and Macau ElbertE N 2010 Acta Astronautica 67 881
[7] Wang X Y, Zhang N, Ren X L and Zhang Y L 2011 Chin. Phys. B 20 020507
[8] Wu C J, Zhang Y B and Yang N N 2011 Chin. Phys. B 20 060505
[9] Schneier B 1993 Applied Cryptography: Protocols, Algorithms, and Source Code in C (New York: John Wiley & Sons, Inc) p. 618
[10] Menezes A J, Van Oorschot P C and Vanstone S A 1996 Hand Book of Applied Cryptography (New York: CRC Press) p. 794
[11] Gao W, Li F and Wang X L 2009 Computer Standards & Interfaces 31 282
[12] Rivest R L 1991 Advances in Cryptology-CRYPTO'90 (Berlin: Springer-Verlag) p. 303
[13] Rivest R L 1992 Request for Comments (RFC) 1321 (Internet Activities Board, Internet PrivacZ Task Force) April 1992
[14] Kou W D 1997 Network Security and Standards (Boston: Kluwer Academic)
[15] Wang X Y, Lai X J, Feng D G, Chen H and Yu X Y 2005 Lecture Notes on Computer Science 3494 1
[16] Wang X Y and Yu H B 2005 Lecture Notes on Computer Science 3494 19
[17] Wang X Y, Feng D G, Lai X J and Yu H B 2004 Rump Session of Crypo'04 (Californi: Cryptology ePrint Archive)
[18] FIPS 180-1, Secure Hash Standard, NIST, US Department of Commerce, Washington D. C., April 1995
[19] Henzen L, Aumasson J P, Meier W and Phan R C W 2011 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19 1746
[20] Wang X M, Zhang J S and Zhang W F 2003 Acta Phys. Sin. 52 2737 (in Chinese)
[21] Peng F, Qiu S S and Long M 2005 Acta Phys. Sin. 54 4562 (in Chinese)
[22] Zhang H, Wang X F, Li C H and Liu D H 2005 Acta Phys. Sin. 54 4006 (in Chinese)
[23] Wang J Z, Wang Y L and Wang M Q 2006 Acta Phys. Sin. 55 5048 (in Chinese)
[24] Zheng F, Tiao X J, Li X Y and Wu B 2008 Chin. Phys. B 17 1685
[25] Yang Q T and Gao T G 2008 Chin. Phys. B 17 2388
[26] Long M, Peng F and Chen G R 2008 Chin. Phys. B 17 3588
[27] Xiao D, Liao X F and Wang Y 2009 Neurocomputing 72 2288
[28] Ren H J, Wang Y, Xie Q and Yang H Q 2009 Chaos, Solitons and Fractals 42 2014
[29] Wang X Y and Zhao J F 2010 Neurocomputing 73 3224
[30] Wang S H and Shan P Y 2011 Chin. Phys. B 20 090504
[31] Huang Z Q 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3245
[32] Li Y T, Deng S J and Xiao D 2011 Neural Comput & Appl. 20 133
[33] Wang Y, Wong K W and Xiao D 2011 Commun. Nonlinear Sci. Numer. Simul. 16 2810
[34] Kaneko K 1985 Prog. Theor. Phys. 74 1033
[35] Bakhtiari S, Safavi-Naini R and Pieprzyk J 1996 Lecture Notes in Computer Science (Berlin: Springer-Verlag) 1029 201
[36] Shannon C E 1949 Bell System Technology Journal 28 656
[1] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[2] A novel pseudo-random coupled LP spatiotemporal chaos and its application in image encryption
Xingyuan Wang(王兴元), Yu Wang(王宇), Siwei Wang(王思伟), Yingqian Zhang(张盈谦), Xiangjun Wu(武相军). Chin. Phys. B, 2018, 27(11): 110502.
[3] Secure communication based on spatiotemporal chaos
Ren Hai-Peng (任海鹏), Bai Chao (白超). Chin. Phys. B, 2015, 24(8): 080503.
[4] A self-adapting image encryption algorithm based on spatiotemporal chaos and ergodic matrix
Luo Yu-Ling (罗玉玲), Du Ming-Hui (杜明辉). Chin. Phys. B, 2013, 22(8): 080503.
[5] The signal synchronization transmission of a spatiotemporal chaos network constituted by a laser phase-conjugate wave
Li Wen-Lin(李文琳), Li Shu-Feng(李淑凤), and Li Gang(李钢) . Chin. Phys. B, 2012, 21(6): 064217.
[6] Cryptanalysis on an image block encryption algorithm based on spatiotemporal chaos
Wang Xing-Yuan(王兴元) and He Guo-Xiang(何国祥) . Chin. Phys. B, 2012, 21(6): 060502.
[7] Synchronization of spatiotemporal chaos in complex networks via backstepping
Chai Yuan(柴元), LŰ Ling(吕翎), and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(3): 030506.
[8] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling (吕翎), Yu Miao (于淼), Wei Lin-Ling (韦琳玲) , Zhang Meng(张檬), Li Yu-Shan (李雨珊). Chin. Phys. B, 2012, 21(10): 100507.
[9] Security analysis of a one-way hash function based on spatiotemporal chaos
Wang Shi-Hong(王世红) and Shan Peng-Yang(单鹏洋) . Chin. Phys. B, 2011, 20(9): 090504.
[10] Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals
Zhang Qing-Ling(张庆灵), Lü Ling(吕翎), and Zhang Yi(张翼) . Chin. Phys. B, 2011, 20(9): 090514.
[11] Generalized spatiotemporal chaos synchronization of the Ginzburg–Landau equation
Jin Ying-Hua(金英花) and Xu Zhen-Yuan(徐振源) . Chin. Phys. B, 2011, 20(12): 120505.
[12] Synchronization of spatiotemporal chaos in a class of complex dynamical networks
Zhang Qing-Ling(张庆灵) and Lü Ling(吕翎). Chin. Phys. B, 2011, 20(1): 010510.
[13] Projective synchronization of spatiotemporal chaos in a weighted complex network
Lü Ling(吕翎), Chai Yuan(柴元), and Luan Ling(栾玲). Chin. Phys. B, 2010, 19(8): 080506.
[14] Elimination of spiral waves and spatiotemporal chaos by the pulse with a specific spatiotemporal configuration
Yuan Guo-Yong(袁国勇), Yang Shi-Ping(杨世平), Wang Guang-Rui(王光瑞), and Chen Shi-Gang(陈式刚). Chin. Phys. B, 2008, 17(5): 1925-1934.
[15] Evaluating the dynamical coupling between spatiotemporally chaotic signals via an information theory approach
Xiao Fang-Hong (肖方红), Guo Shao-Hua (郭少华), Hu Yuan-Tai (胡元太). Chin. Phys. B, 2006, 15(7): 1460-1463.
No Suggested Reading articles found!