Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 058503    DOI: 10.1088/1674-1056/21/5/058503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Highly efficient blue fluorescent OLEDs with doped double emitting layers based on p–n heterojunctions

Su Yue-Ju(苏跃举)a)b)c), Wu Xiao-Ming(吴晓明)a)b)c), Hua Yu-Lin(华玉林)a)b)c), Shen Li-Ying(申利莹)a)b)c), Jiao Zhi-Qiang(焦志强) a)b)c), Dong Mu-Sen(董木森)a)b)c), and Yin Shou-Gen(印寿根)a)b)c)
1. School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China;
2. Key Laboratory of Display Materials & Photoelectric Devices of Ministry of Education, Tianjin University of Technology, Tianjin 300384, China;
3. Tianjin Key Laboratory for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, China
Abstract  We fabricate a kind of novel efficient blue fluorescent organic light emitting device (OLED) based on p--n heterojunctions composed of hole transporting layer (HTL) $N$,$N^\prime$-bis(naphthalen-1-yl)-$N$,$N^\prime$-bis(phenyl)-benzidine (NPB) and electron transporting layer (ETL) 4,7-diphnenyl-1,10-phenanthroline (BPhen), into which a new blue material, DNCA (a derivation of N6, N6, N12, N12-tetrap-tolylchrysene-6,12-diamine), is partially doped simultaneously, and double emitting layers are configured. With a turn-on voltage of 2.6 V at 1 cd/m2, this type of OLED presents a maximum luminance efficiency (ηmax) of 8.83 cd/A at 5.818 mA/cm2 and a maximum luminance of over 40000 cd/m2. Meanwhile, the Commission Internationale De L'Eclairage (CIE) coordinates of this device change slightly from (0.13, 0.27) to (0.13, 0.23) as the driving voltage increases from 3 V to 11 V. This improvement in the electroluminescent characteristics is attributed mainly to the ideal p--n heterojunction which can confine and distribute excitons evenly on two sides of the heterojunction interface so as to improve the carrier combination rate and expand the light-emitting region.
Keywords:  heterojunction      organic light-emitting diodes      exciplex emission      double emitting layers  
Received:  14 September 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Jb (Light-emitting devices)  
  78.60.Fi (Electroluminescence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60906022 and 60876046) and the Tianjin Natural Science Foundation, China (Grant No. 10JCYBJC01100).

Cite this article: 

Su Yue-Ju(苏跃举), Wu Xiao-Ming(吴晓明), Hua Yu-Lin(华玉林), Shen Li-Ying(申利莹), Jiao Zhi-Qiang(焦志强), Dong Mu-Sen(董木森), and Yin Shou-Gen(印寿根) Highly efficient blue fluorescent OLEDs with doped double emitting layers based on p–n heterojunctions 2012 Chin. Phys. B 21 058503

[1] Hung L S and Chen C H 2002 Mater. Sci. Eng. R 39 143
[2] Liu N L, Ai N, Hu D G, Yu S F, Peng J B, Cao Y and Wang J 2001 Acta Phys. Sin. 60 087805 (in Chinese)
[3] Cao G H, Qin D S, Guan M, Cao J S, Zeng Y P and Li J M 2008 Chin. Phys. B 17 1674
[4] Adachi C, Baldo M A, Thompson M E and Forrest S R 2001 J. Appl. Phys. 90 5048
[5] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E and Forrest S R 1998 Nature 395 151
[6] Adachi C, Kwong R C, Djurovich P, Adamovich V, Baldo M A, Thompson M E and Forrest S R 2001 Appl. Phys. Lett. 79 2082
[7] Wen S W, Lee M T and Chen C H 2005 J. Disp. Technol. 1 90
[8] Chopra N, Swensen J S, Polikarpov E, Cosimbescu L, So F and Padmaperuma A B 2010 Appl. Phys. Lett. 97 033304
[9] Lee J, Lee J L, Lee J Y and Chu H Y 2009 Appl. Phys. Lett. 94 193305
[10] Qi Q J, Wu X M, Hua Y L, Hou Q C, Dong M S, Mao Z Y, Yin B and Yin S G 2010 Org. Electron. 11 503
[11] Zheng T and Choy W C 2008 J. Phys. D: Appl. Phys. 41 055103
[12] He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R and Salbeck J 2004 Appl. Phys. Lett. 85 3911
[13] Khalifa M B, Mazzeo M, Maiorano V, Mariano F, Carallo S, Melcarne A, Cingolani R and Gigli G 2008 J. Phys. D:Appl. Phys. 41 155111
[14] Zhang H M, Choy W C H and Li K 2010 IEEE Trans. Electron. Dev. 57 125
[15] Chen B, Lee C S, Lee S T, Webb P, Chan Y C, Gambling W, Tian H and Zhu W 2000 Jpn. J. Appl. Phys. 39 1190
[16] NaKa S, Okada H, Onnagawa H, Tsutsu T 2000 Appl. Phys. Lett. 76 197
[17] Chao C L and Chen S A 1998 Appl. Phys. Lett. 73 426
[18] Feng J, Li F, Gao W B, Liu S Y, Liu Y and Wang Y 2001 Appl. Phys. Lett. 78 3947
[19] Tang C W, Vanslyke S A and Chen C H 1989 J. Appl. Phys. 65 3610
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[6] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[7] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[8] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[9] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[10] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[11] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[12] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[13] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
No Suggested Reading articles found!