Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057201    DOI: 10.1088/1674-1056/21/5/057201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Breakdown voltage analysis of Al0.25Ga0.75N/GaN high electron mobility transistors with partial silicon doping in the AlGaN layer

Duan Bao-Xing(段宝兴)a)b)† and Yang Yin-Tang(杨银堂)a)b)
1. School of Microelectronics, Xidian University, Xi'an 710071, China;
2. Key Laboratory of Wide Band Gap Semiconductor Materials and Devices of Ministry of Education, Xi'an 710071, China
Abstract  In this paper, two-dimensional electron gas (2DEG) regions in AlGaN/GaN high electron mobility transistors (HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time. A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge. The high electric field near the gate for the complete silicon doping structure is effectively decreased, which makes the surface electric field uniform. The high electric field peak near the drain results from the potential difference between the surface and the depletion regions. Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer. The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain. The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field.
Keywords:  AlGaN/GaN      high electron mobility transistors (HEMTs)      two-dimensional electron gas (2DEG)      electric field modulation  
Received:  13 September 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  72.80.Ga (Transition-metal compounds)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61106076).

Cite this article: 

Duan Bao-Xing(段宝兴) and Yang Yin-Tang(杨银堂) Breakdown voltage analysis of Al0.25Ga0.75N/GaN high electron mobility transistors with partial silicon doping in the AlGaN layer 2012 Chin. Phys. B 21 057201

[1] Zhang A P, Johnson J W and Ren F 2001 Appl. Phys. Lett. 78 823
[2] Saito W, Kuraguchi M, Takada Y, Tsuda K, Omura I and Ogura T 2005 IEEE Trans. Electron Devices 52 106
[3] Song D, Liu J, Cheng Z Q, Tang W C W, Lau K M and Chen K J 2007 IEEE Electron Device Lett. 28 189
[4] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T and Kuzuhara M 2003 IEEE Electron Device Lett. 24 289
[5] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117
[6] Tipirneni N, Koudymov A, Adivarahan V, Yang J, Simin G and Asif Khan M 2006 IEEE Electron Device Lett. 27 716
[7] Arulkumaran S, Egawa T, Ishikawa H and Jimbo T 2003 Appl. Phys. Lett. 82 3110
[8] Bardwell J A, Haffouz S, McKinnon W R, Storey C, Tang H, Sproule G I, Roth D and Wang R 2007 Electrochem. Solid-State Lett. 10 H46
[9] Chattopadhyay M K and Tokekar S 2008 Microelectron. J. 39 1181
[10] Arulkumaran S, Liu Z H, Ng G I, Cheong W C, Zeng R, Bu J, Wang H, Radhakrishnan K and Tan C L 2007 Thin Solid Films 515 4517
[11] Jha S, Jelenkovic E V, Pejovic M M, Ristic G S, Pejovic M, Tong K Y, Surya C, Bello I and Zhang W J 2009 Microelectron. Eng. 86 37
[12] Chen X B and Johnny K O S 2001 IEEE Trans. Electron Devices 48 344
[13] Sameh G, Nassif K and Salama C A T 2003 IEEE Trans. Electron Devices 50 1385
[14] Duan B X, Zhang B and Li Z J 2005 Solid-State Electron. 49 1965
[15] Duan B X, Zhang B and Li Z J 2006 IEEE Electron Device Lett. 27 377
[16] Duan B X, Yang Y T, Zhang B and Hong X F 2009 IEEE Electron Device Lett. 12 1329
[17] Duan B X, Yang Y T and Zhang B 2009 IEEE Electron Device Lett. 30 305
[18] Duan B X, Yang Y T and Zhang B 2010 Solid-State Electron. 54 685
[19] Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T and Ohashi H 2003 IEEE Trans. Electron Devices 50 2528
[20] Koudymov A, Adivarahan V, Yang J, Simin G and Asif Khan M 2005 IEEE Electron Device Lett. 26 704
[21] Karmalkar S, Deng J Y, Shur M S and Gaska R 2001 IEEE Electron Device Lett. 22 373
[22] ISE TCAD Manuals, release 10.0.
[23] Zhang S, Sin J K O, Lai T M L and Ko P K 1999 IEEE Trans. Electron Device 46 1036
[24] Hardikar S, Tadikonda R, Green D W, Vershinin K V and Sankara Narayanan E M 2004 IEEE Trans. Electron Device 51 2223
[25] Heikman S, Keller S, DenBaars S P and Mishra U K 2002 Appl. Phys. Lett. 81 439
[26] Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J and Uzan-Saguy C 2001 Appl. Phys. Lett. 78 757
[27] Webb J B, Tang H, Rolfe S and Bardwell J A 1999 Appl. Phys. Lett. 75 953
[28] Katzer D S, Storm D F, Binari S C, Roussos J A, Shanabrook B V and Glaser E R 2003v J. Cryst. Growth 251 481
[29] Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K and Speck J S 2004 J. Vac. Sci. Technol. B 22 114
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[4] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[5] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[6] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[7] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[10] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[11] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[12] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[13] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[14] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[15] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
No Suggested Reading articles found!