Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057106    DOI: 10.1088/1674-1056/21/5/057106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Implementation of LDA+DMFT with the pseudo-potential-plane-wave method

Zhao Jian-Zhou(赵建洲)a)b), Zhuang Jia-Ning(庄嘉宁)a), Deng Xiao-Yu(邓小宇)a)c), Bi Yan(毕延) b), Cai Ling-Cang(蔡灵仓)b), Fang Zhong(方忠)a), and Dai Xi(戴希)a)
a. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b. National key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
c. Centre de Physicque Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
Abstract  We propose an efficient implementation of combining dynamical mean field theory (DMFT) with electronic structural calculation based on the local density approximation (LDA). The pseudo-potential-plane-wave method is used in the LDA part, which enables it to be applied to large systems. The full loop self consistency of the charge density has been reached in our implementation, which allows us to compute the total energy related properties. The procedure of LDA+DMFT is introduced in detail with a complete flow chart. We have also applied our code to study the electronic structure of several typical strong correlated materials, including cerium, americium and NiO. Our results fit quite well with both the experimental data and previous studies.
Keywords:  LDA+DMFT      strong correlated electrons  
Received:  26 December 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00108), the National Natural Science Foundation of China (Grants Nos. 10876042 and 10874158), the Development Foundation of China Academy of Engineering Physics (Grants Nos. 2008A0101001 and 2010A0101001), and the Fund of the Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics (Grant No. 2011-056000-0833F).

Cite this article: 

Zhao Jian-Zhou(赵建洲), Zhuang Jia-Ning(庄嘉宁), Deng Xiao-Yu(邓小宇), Bi Yan(毕延), Cai Ling-Cang(蔡灵仓), Fang Zhong(方忠), and Dai Xi(戴希) Implementation of LDA+DMFT with the pseudo-potential-plane-wave method 2012 Chin. Phys. B 21 057106

[1] Liu F L, Jiang G, Bai L N and Kong F J 2011 Acta Phys. Sin. 60 037104 (in Chinese)
[2] Qu N R and Gao F M 2011 Acta Phys. Sin. 60 067102 (in Chinese)
[3] Wang X Z, Lin L B, He J and Chen J 2011 Acta Phys. Sin. 60 077104 (in Chinese)
[4] Li X F, Liu Z L, Peng W M and Zhao A K 2011 Acta Phys. Sin. 60 076501 (in Chinese)
[5] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[6] Lechermann F, Georges A, Poteryaev A, Biermann S, Posternak M, Yamasaki A and Andersen O K 2006 Phys. Rev. B 74 125120
[7] Anisimov V I, Kozhevnikov A V, Korotin M A, Lukoyanov A V and Khafizullin D A 2007 J. Phys.: Condens. Matter 19 106206
[8] Savrasov S Y and Kotliar G 2004 Phys. Rev. B 69 245101
[9] Min醨 J, Chioncel L, Perlov A, Ebert H, Katsnelson M and Lichtenstein A 2005 Phys. Rev. B 72 045125
[10] Pourovskii L V, Amadon B, Biermann S and Georges A 2007 Phys. Rev. B 76 235101
[11] Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107
[12] Andersen O K 1975 Phys. Rev. B 12 3060
[13] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767
[14] Lichtenstein A I and Katsnelson M I 1998 Phys. Rev. B 57 6884
[15] Savrasov S Y, Kotliar G and Abrahams E 2001 Nature 410 793
[16] Andersen O K and Saha-Dasgupta T 2000 Phys. Rev. B 62 R16219
[17] Anisimov V I, Kondakov D E, Kozhevnikov A V, Nekrasov I A, Pchelkina Z V, Allen J W, Mo S K, Kim H D, Metcalf P, Suga S, Sekiyama A, Keller G, Leonov I, Ren X and Vollhardt D 2005 Phys. Rev. B 71 125119
[18] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[19] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[20] Amadon B, Lechermann F, Georges A, Jollet F, Wehling T O and Lichtenstein A I 2008 Phys. Rev. B 77 205112
[21] Trimarchi G, Leonov I, Binggeli N, Korotin Dm and Anisimov V I 2008 J. Phys.: Condens. Matter 20 135227
[22] Korotin D M, Kozhevnikov A V, Skornyakov S L, Leonov I, Binggeli N, Anisimov V I and Trimarchi G 2008 Eur. Phys. J. B 98 91
[23] Vanderbilt D 1996 Phys. Rev. B 41 7892
[24] Hamann D R, Schl黷er M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[25] Held K 2007 Advances in Physics 56 829
[26] Savrasov S Y, Haule K and Kotliar G 2006 Phys. Rev. Lett. 96 036404
[27] Amadon B, Biermann S, Georges A and Aryasetiawan F 2006 Phys. Rev. Lett. 96 066402
[28] Tian M F, Deng X Y, Fang Z and Dai X 2001 Phys. Rev. B 84 205124
[29] Haule K, Oudovenko V, Savrasov S Y and Kotliar G 2005 Phys. Rev. Lett. 94 036401
[30] Amadon B 2011 arXiv:1101.0539
[31] Jeong I K, Darling T W, Graf M J, Proffen Th, Heffner R H, Lee Y, Vogt T and Jorgensen J D 2004 Phys. Rev. Lett. 92 105702
[32] Decremps F, Antonangeli D, Amadon B and Schmerber G 2009 Phys. Rev. B 80 132103
[33] Huang L and Chen C A 2007 J. Phys.: Condens. Matter 2007 19 476206
[34] Amadon B, Jollet F and Torrent M 2008 Phys. Rev. B 77 155104
[35] Wuilloud E, Moser H R, Schneider W D and Baer Y 1983 Phys. Rev. B 28 7354
[36] Wieliczka D, Weaver J H, Lynch D W and Olson C G 1982 Phys. Rev. B 26 7056
[37] Moore K T and van der Laan G 2009 Rev. Mod. Phys. 81 235
[38] Naegele J R, Manes L, Spirlet J C and M黮ler W 1984 Phys. Rev. Lett. 52 1834
[39] Heathman S, Haire R G, Le Bihan T, Lindbaum A, Litfin K, M閞esse Y and Libotte H 2000 Phys. Rev. Lett. 85 2961
[40] Carnall W T and Wybourne B G 1964 J. Chem. Phys. 40 3428
[41] Lindbaum A, Heathman S, Litfin K, M閞esse Y, Haire R G, Le Bihan T and Libotte H 2001 Phys. Rev. B 63 214101
[42] Kutepov A and Kutepova S 2004 J. Magn. Magn. Mater. 272 E329
[43] Ren X, Leonov I, Keller G, Kollar M, Nekrasov I and Vollhardt D 2006 Phys. Rev. B 74 195114
[44] Kuneš J, Anisimov V I, Lukoyanov A V and Vollhardt D 2007 Phys. Rev. B 75 4
[45] Sawatzky G and Allen J 1984 Phys. Rev. Lett. 53 2339
[1] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[2] CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
Zhaokun Dong(董昭昆), Zhen Wang(王振), Te Zhang(张特), Junsen Xiang(项俊森), Shuai Zhang(张帅), Lihua Liu(刘丽华), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117502.
[3] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[4] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[5] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[6] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[7] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[8] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[9] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[10] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[11] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[12] Intercalation of van der Waals layered materials: A route towards engineering of electron correlation
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(9): 097104.
[13] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[14] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[15] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
No Suggested Reading articles found!