Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 056101    DOI: 10.1088/1674-1056/21/5/056101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Fracture characteristics of bulk metallic glass under high speed impact

Sun Bao-Ru(孙宝茹), Zhan Zai-Ji(战再吉), Liang Bo(梁波), Zhang Rui-Jun(张瑞军), and Wang Wen-Kui(王文魁)
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Abstract  High speed impact experiments of rectangular plate-shaped Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) were performed using a two-stage light gas gun. Under spherical shock waves with impact velocities ranging from 0.503 km/s to 4.917 km/s, obvious traces of laminated spallation at the back (free) surface and melting (liquid droplets) at the impact point were observed. The angles about 0°, 17°, 36°, and 90° to the shocking direction were shown in the internal samples because of the interaction between the compressive shock waves and the rarefaction waves. The compressive normal stress was found to induce the consequent temperature rise in the core of the shear band.
Keywords:  bulk metallic glass      shock wave      shear cracks/bands  
Received:  31 May 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  62.20.M- (Structural failure of materials)  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB731600).

Cite this article: 

Sun Bao-Ru(孙宝茹), Zhan Zai-Ji(战再吉), Liang Bo(梁波), Zhang Rui-Jun(张瑞军), and Wang Wen-Kui(王文魁) Fracture characteristics of bulk metallic glass under high speed impact 2012 Chin. Phys. B 21 056101

[1] Tang X P, Geyer U, Busch R, Johnson W L and Wu Y 1999 Nature 402 160
[2] Wei H Q, Long Z L and Zhang Z C 2009 Acta Phys. Sin. 58 2556 (in Chinese)
[3] Dai L H, Liu L F, Yan M and Wei B C 2004 Chin. Phys. Lett. 21 1593
[4] Subhash G, Dowding R and Kecskes L 2002 Mater. Sci. Eng. A 334 33
[5] Liu L F, Dai L H and Bai Y L 2008 Chin. Phys. Lett. 25 1052
[6] Conner R, Choi-Yim H and Johnson W 1999 J. Mater. Res. 14 3292
[7] Nathenson D 2006 Experimental Investigation of High Velocity Impacts on Brittle Materials (Ph. D. dissertation) (Cleveland:Case Western Reserve University) p. 78
[8] Yang C, Liu R P, Zhang B Q, Wang Q, Zhan Z J, Sun L L, Zhang J and Gong Z Z 2005 J. Mater. Sci. 40 3917
[9] Yang C, Wang W K, Liu R P, Zhang X Y and Li X 2006 Journal of Spacecraft and Rockets 43 565
[10] Zhuang S M, Lu J and Ravichandran G 2002 Appl. Phys. Lett. 80 4522
[11] Mukai T, Nieh T, Kawamura Y, Inoue A and Higashi K 2002 Intermetallics 10 1071
[12] Morgana M 2008 Quasar Structure from Microlensing in Gravitationally Lensed Quasars (Ph. D. dissertation) (Atlanta:Georgia Institute of Technology) pp. 14--28
[13] Lu J 2002 Mechanical Behavior of a Bulk Metallic Glass and its Composite over a Wide Range of Strain Rates and Temperatures (Ph. D. Dissertation) (Pasadena:California Institute of Technology) pp. 172--177, p. 54
[14] Hufnagel T C, Jiao T, Li Y, Xing L Q and Ramesh K T 2002 J. Mater. Res. 17 1441
[15] Bach J, Krueger B and Fultz B 1991 Mater. Lett. 11 383
[16] Conner R D, Dandliker R B, Scruggs V and Johnson W L 2000 International Journal of Impact Engineering 24 435
[17] Bruck H A, Rosakis A J and Johnson W L 1996 J. Mater. Res. 11 503
[18] Yang C 2005 The Shock Wave Effect of ZrTiCuNiBe Bulk Metallic Glass (Ph. D. Dissertation) (Qinhuangdao:Yanshan University) pp. 24--33
[19] Subhash G 2000 ASM Handbook, Mechanical Testing and Evaluation, ASM International 8 519
[20] Zhang H W, Spandan M and Subhash G 2008 J. Mech. Phys. Solids 56 2171
[21] Seaman L, Curran D R and Shockey D A 1976 J. Appl. Phys. 47 4814
[22] Deng X L, Zhu W J, Song Z F, He H L and Jing F Q 2009 Acta Phys. Sin. 58 4772 (in Chinese)
[23] Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H and Ding Y K 2011 Chin. Phys. B 20 065202
[1] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[2] Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2021, 30(10): 104701.
[3] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[4] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[5] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[6] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[7] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[8] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[9] Amorphous phase formation rules in high-entropy alloys
Qiu-Wei Xing(邢秋玮), Yong Zhang(张勇). Chin. Phys. B, 2017, 26(1): 018104.
[10] LaGa-based bulk metallic glasses
Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋). Chin. Phys. B, 2017, 26(1): 018106.
[11] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[12] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[13] Laser-driven flier impact experiments at the SG-III prototype laser facility
Shui Min (税敏), Chu Gen-Bai (储根柏), Xin Jian-Ting (辛建婷), Wu Yu-Chi (吴玉迟), Zhu Bin (朱斌), He Wei-Hua (何卫华), Xi Tao (席涛), Gu Yu-Qiu (谷渝秋). Chin. Phys. B, 2015, 24(9): 094701.
[14] Dynamic strength behavior of a Zr-based bulk metallic glassunder shock loading
Yu Yu-Ying (俞宇颖), Xi Feng (习锋), Dai Cheng-Da (戴诚达), Cai Ling-Cang (蔡灵仓), Tan Ye (谭叶), Li Xue-Mei (李雪梅), Wu Qiang (吴强), Tan Hua (谭华). Chin. Phys. B, 2015, 24(6): 066201.
[15] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue (张略), Wang Xiang-Da (王祥达), Liu Xiao-Zhou (刘晓宙), Gong Xiu-Fen (龚秀芬). Chin. Phys. B, 2015, 24(1): 014301.
No Suggested Reading articles found!