Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 050304    DOI: 10.1088/1674-1056/21/5/050304
GENERAL Prev   Next  

Nonlocal quantum cloning via quantum dots trapped in distant cavities

Yu Tao(于涛), Zhu Ai-Dong(朱爱东), and Zhang Shou(张寿)
Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  A scheme for implementing nonlocal quantum cloning via quantum dots trapped in cavities is proposed. By modulating the parameters of the system, the optimal 1→2 universal quantum cloning machine, 1→2 phase-covariant cloning machine, and 1→3 economical phase-covariant cloning machine are constructed. The present scheme, which is attainable with current technology, saves two qubits compared with previous cloning machines.
Keywords:  quantum cloning      quantum dots      cavity quantum electrodynamics  
Received:  02 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11165015) and the Nature Science Foundation of Jilin Province, China (Grant No. 201115226).

Cite this article: 

Yu Tao(于涛), Zhu Ai-Dong(朱爱东), and Zhang Shou(张寿) Nonlocal quantum cloning via quantum dots trapped in distant cavities 2012 Chin. Phys. B 21 050304

[1] Wootters W K and Zurek W H 1982 Nature 299 802
[2] Bužek V and Hillery M 1996 Phys. Rev. A 54 1844
[3] Werner R F 1998 Phys. Rev. A 58 1827
[4] Bru?D, Cinchetti M, D’Ariano G M and Macchiavello C 2000 Phys. Rev. A 62 012302
[5] Fan H, Imai H, Matsumoto K and Wang X B 2003 Phys. Rev. A 67 022317
[6] Niu C S and Griffiths R B 1999 Phys. Rev. A 60 2764
[7] Fiurášek J 2003 Phys. Rev. A 67 052314
[8] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[9] Imamoglu A, Awschalom D D, Burkard G, Loss D, DiVincenzo D P, Sherwin M and Small A 1999 Phys. Rev. Lett:83 4204
[10] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett 101 230501
[11] Hao X and Zhu S Q 2007 Phys. Rev. A 76 044306
[12] Xu X D, Bo S, Berman P R, Steel D G, Bracker A S, Gammon D and Sham L J 2008 Nature 4 629
[13] Kosaka H, Shigyou H, Mitsumori Y, Rikitake Y, Imamura H, Kutsuwa T, Arai K and Edamatsu K 2008 Phys. Rev. Lett. 100 096602
[14] Zhou X Q, Wu Y W and Zhao H 2011 Acta Phys. Sin. 4 60 (in Chinese)
[15] Yin J Q, Li Y, Bao X Q, Peng X H, Cheng Z, Yang T and Pan G S 2011 Acta Phys. Sin. 6 60 (in Chinese)
[16] Lin X M, Zhou Z W, Ye M Y, Xiao Y F and Guo G C 2006 Phys. Rev. A 73 012323
[17] Xiao Y F, Lin X M, Gao J, Yang Y, Han Z F and Guo G C 2004 Phys. Rev. A 70 042314
[18] Fang B L, Song Q M and Ye L 2011 Phys. Rev. A 83 042309
[19] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
[20] Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H and Rempe G 2005 Phys. Rev. Lett. 94 033002
[21] Press D, Greve K D, McMahon P L, Ladd T D, Friess B, Schneider C, Kamp M, Höfling S, Forchel A and Yamamoto Y 2010 Nature 4 367
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[12] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[13] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[14] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[15] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
No Suggested Reading articles found!