Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 050302    DOI: 10.1088/1674-1056/21/5/050302
GENERAL Prev   Next  

Electromagnetic absorption properties of flowerlike cobalt composites at microwave frequencies

Liu Tao(刘涛), Zhou Pei-Heng(周佩珩), Liang Di-Fei(梁迪飞), and Deng Long-Jiang(邓龙江)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  In this work, we report the electromagnetic absorption (EMA) properties of composites consisting of micrometer-sized cobalt with flowerlike architecture synthesized by a facile hydrothermal reduction method. Compared with the conventional spherical Co-paraffin composites, the flowerlike Co-paraffin composites are favorable with respect to EMA performance in the low frequency region, ascribing interfacial polarization loss and Ohmic loss to the improvement in the impedance match.
Keywords:  electromagnetic absorption      flowerlike cobalt composites      interfacial polarization loss      Ohmic loss  
Received:  11 July 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  

Cite this article: 

Liu Tao(刘涛), Zhou Pei-Heng(周佩珩), Liang Di-Fei(梁迪飞), and Deng Long-Jiang(邓龙江) Electromagnetic absorption properties of flowerlike cobalt composites at microwave frequencies 2012 Chin. Phys. B 21 050302

[1] Byrappa K and Adschiri T 2007 Prog. Cryst. Grow. Ch. 53 117
[2] Whitesides G M and Grzybowski B 2002 Science 295 2418
[3] Wang Z L, Dai Z and Sun S 2002 Adv. Mater. 12 1944
[4] Wen F S, Qiao L, Zhou D, Zuo W L, Yi H B and Li F S 2008 Chin. Phys. B 17 2263
[5] Yan J F, You T G, Zhang Z Y, Tian J X, Yun J N and Zhao W 2011 Chin. Phys. B 20 048102
[6] Liu X M, Gao W L, Miao S B and Ji B M 2008 J. Phys. Chem. Solids 69 2665
[7] An Z G, Zhang J J and Pan S L 2010 Mater. Chem. Phys. 123 795
[8] Li H, Jin Z, Song H Y and Liao S 2010 J. Magn. Magn. Mater. 322 30
[9] Wang R H, Jiang J S and Hu M 2009 Mater. Res. Bull. 44 1468
[10] Liu X M and Fu S Y 2007 J. Cryst. Growth 306 428
[11] Wang Y, Zhu Q S and Zhang H G 2007 Mater. Res. Bull. 42 1450
[12] Li Q and Du W M 2009 Rare Metal Mat. Eng. 38 2080
[13] Liu T, Zhou P H, Xie J L and Deng L J 2010 J. Appl. Phys. 110 033918
[14] Li H R 1990 Introduction to Diectric Physics (Chengdu:University of Electronic Science and Technology of China Press) p. 176
[15] Ramo S, Whinnery J R and Duzer T V 1984 Fields and Waves in Communication Electronics (New York:Wiley)
[16] Aharoni A 1991 J. Appl. Phys. 69 7762
[17] Zhang Q, Li C F, Chen Y N, Han Z, Wang H, Wang Z J, Geng D Y, Liu W and Zhang Z D 2010 Appl. Phys. Lett. 97 133115
[18] Zhou P H, Zhang L and Deng L J 2010 Appl. Phys. Lett. 93 112510
[19] Deng L J, Zhou P H, Xie J L and Zhang L 2007 J. Appl. Phys. 101 103916
[20] Naito Y and Suetake K 1971 IEEE Trans. Microwave Theory Tech. 19 65
[1] Forward-wave enhanced radiation in the terahertz electron cyclotron maser
Zi-Chao Gao(高子超), Chao-Hai Du(杜朝海), Fan-Hong Li(李繁弘), Zi-Wen Zhang(张子文), Si-Qi Li(李思琦), and Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2022, 31(12): 128401.
No Suggested Reading articles found!