Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037804    DOI: 10.1088/1674-1056/21/3/037804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Terahertz wave generation in coupled quantum dots

Ma Yu-Rong(马玉蓉)a), Guo Shi-Fang(郭世方)b), and Duan Su-Qing(段素青)b)
a. Beijing Vocational College of Electronic Science, Beijing 100176, China;
b. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a considerable dipole moment. The terahertz wave is obtained from the low-frequency component of the photon emission spectrum. The frequency of the terahertz wave can be controlled by tuning the energy levels via designing the nanostructure appropriately or tuning the driving laser field. A terahertz wave with adjustable frequency and considerable intensity (100 times higher than that of the Rayleigh line) can be obtained. It provides an effective scheme for a terahertz source.
Keywords:  coupled quantum dot      terahertz wave  
Received:  08 August 2011      Revised:  23 September 2011      Accepted manuscript online: 
PACS:  78.66.Fd (III-V semiconductors)  
  78.67.Hc (Quantum dots)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874020 and 11074025) and the National Basic Research Program of China (Grant No. 2011CB922204).
Corresponding Authors:  Duan Su-Qing,duan_suqing@iapcm.ac.cn     E-mail:  duan_suqing@iapcm.ac.cn

Cite this article: 

Ma Yu-Rong(马玉蓉), Guo Shi-Fang(郭世方), and Duan Su-Qing(段素青) Terahertz wave generation in coupled quantum dots 2012 Chin. Phys. B 21 037804

[1] Tonouchi M 2007 Nat. Photonics 1 97
[2] Ito H, Nakajima F, Furuta T and Ishibashi T 2005 Semicond. Sci. Technol. 20 S191
[3] Kawase K and Shikata J and Ito I 2001 J. Phys. D 34 R1
[4] Belkin M A, Capasso F, Belyanin A, Sivco D L, Cho A Y, Oakley D C, Vineis C J and Turner G W 2007 Nat. Photonics 1 288
[5] Kibis O V, Slepyan G Y, Maksimenko S A and Hoffmann A 2009 Phys. Rev. Lett. 102 023601
[6] Ganeev R A, Singhal H, Naik P A, Kulagin I A, Redkin P V, Chakera J A, Tayyab M, Khan R A and Gupta P D 2009 Phys. Rev. A 80 033845
[7] Xie Y, Duan S Q, Chu W D and Yang N 2010 Chin. Phys. B 19 117302
[8] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
[9] Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
[10] Vitiello M S, Scamarcio G, Spagnolo V, Losco T, Green R P, Tredicucci A, Beere H E and Ritchie D A 2006 Appl. Phys. Lett. 88 241109
[11] Straub A, Mosely T S, Gmachl C, Colombelli R, Troccoli M, Capasso F, Sivco D L and Cho A Y 2002 Appl. Phys. Lett. 80 2845
[12] Williams B S 2007 Nat. Photonics 1 517
[13] Scalari G, Walther C, Faist J, Beere H and Ritchie D 2006 Appl. Phys. Lett. 88 141102
[14] Otsuji T, Hanabe M, Nishimura T and Sano E 2006 Opt. Express 14 4815
[15] Sekine N and Hirakawa K 2005 Phys. Rev. Lett. 94 057408
[16] Orihashi N, Suzuki S and Asada M 2005 Appl. Phys. Lett. 87 233501
[17] Crowe T W, Bishop W L, Perterfi eld D W, Hesler J L and Weikle R M 2005 IEEE J. Solid-State Circuits 40 2104
[18] Williams G P 2002 Rev. Sci. Instr. 73 1461
[19] Bergner A, Heugen U, Br黱dermann E, Schwaab G, Havenith M, Chamberlin D R and Haller E E 2005 Rev. Sci. Instr. 76 063110
[20] Ahn K J, Milde F and Knorr A 2007 Phys. Rev. Lett. 98 027401
[21] Chassagneux Y 2009 Nature 457 174
[22] Duan S Q, Zhang W, Xie Y, Chu W D and Zhao X G 2009 Phys. Rev. B 80 161304(R)
[23] Carr G L, Martin M C, McKinney W R, Jordan K, Neil G T and Williams G P 2002 Nature 420 153
[24] Sheng Z M, Mima K, Zhang J and Sanuki H 2005 Phys. Rev. Lett. 94 095003
[25] Leemans W P, Geddes C G R, Faure J, T髏h Cs, van Tilborg J, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J and Martin M C 2003 Phys. Rev. Lett. 91 074802
[26] Eberly J H and Fedorov M V 1992 Phys. Rev. A 45 4706
[27] Avetissian H K, Avchyan B R and Mkrtchian G F 2010 Phys. Rev. A 82 063412
[28] Millack T and Maquet A 1993 J. Mod. Opt. 40 2161
[29] Piazza A D and Fiordilino E 2001 Phys. Rev. A 64 013802
[30] Zhou Z Y and Yuan J M 2008 Phys. Rev. A 77 063411
[31] Dakhnovskii Y and Metiu H 1993 Phys. Rev. A 48 2342
[32] Minami Y, Nakajima M and Suemoto T 2011 Phys. Rev. A 83 023828
[33] Silvermana K L, Mirin R P, Cundiff S T and Norman A G 2003 Appl. Phys. Lett. 82 4552
[34] Andreev A D and O'Reilly E P 2005 Appl. Phys. Lett. 87 213106
[35] Guo S F, Duan S Q, Xie Y, Chu W D and Zhang W 2011 New J. Phys. 13 053005
[1] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[2] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[3] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[4] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[5] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[6] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[7] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[8] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[9] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[10] Single-shot measurement of THz pulses
Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫). Chin. Phys. B, 2020, 29(5): 057803.
[11] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[12] Ultra-compact terahertz switch with graphene ring resonators
Jian-Zhong Sun(孙建忠), Le Zhang(章乐), Fei Gao(高飞). Chin. Phys. B, 2016, 25(10): 108701.
[13] Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss
Yu Ying-Ying (于莹莹), Li Xu-You (李绪友), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2015, 24(6): 068702.
[14] Realization of a broadband terahertz wavelength-selective coupling based on five-core fibers
Li Xu-You (李绪友), Yu Ying-Ying (于莹莹), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2014, 23(8): 088701.
[15] High performance oscillator with 2-mW output power at 300 GHz
Wu De-Qi (武德起), Ding Wu-Chang (丁武昌), Yang Shan-Shan (杨姗姗), Jia Rui (贾锐), Jin Zhi (金智), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2014, 23(5): 057204.
No Suggested Reading articles found!