Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037302    DOI: 10.1088/1674-1056/21/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Field-assisted spin-polarized electron transport through a single quantum well with spin–orbit coupling

Ding Xiu-Huan(丁秀欢)a)b), Zhang Cun-Xi(张存喜) c)†, Wang Rui(王瑞)c) Zhou Yun-Qing(周运清)c), and Kong Ling-Min(孔令民)c)
a. Department of Mathematics, Zhejiang Ocean University, Zhoushan 316000, China;
b. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China;
c. Department of Physics, Zhejiang Ocean University, Zhoushan 316000, China
Abstract  We have investigated theoretically the field-driven electron transport through a single-quantum-well semiconductor heterostructure with spin-orbit coupling. The splitting of the asymmetric Fano-type resonance peaks due to the Dresselhaus spin-orbit coupling is found to be highly sensitive to the direction of the incident electron. The splitting of the Fano-type resonance induces the spin-polarization dependent electron current. The location and the line shape of the Fano-type resonance can be controlled by adjusting the energy and the direction of the incident electron, the oscillation frequency, and the amplitude of the external field. These interesting features may be used to devise tunable spin filters and realize pure spin transmission currents.
Keywords:  Fano resonance      Floquet channel      spin-orbit coupling  
Received:  07 November 2011      Revised:  23 November 2011      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  73.63.Hs (Quantum wells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11147173 and 61106052)he Zhejiang Education Department, China (Grant No. Y201018926 and Y200908466), the Basic Research Foundation of Jilin University, China (Grant No. 93K172011K02), the Basic Research Foundation of Zhejiang Ocean University, the Nature Science Foundation of Zhejiang Province, China (Grant No. 1047172)nd the Open Foundation from Ocean Fishery Science and Technology in the Most Important Subjects of Zhejiang, China(No. 20110105).
Corresponding Authors:  Zhang Cun-Xi,cunxizhang@yahoo.com.cn     E-mail:  cunxizhang@yahoo.com.cn

Cite this article: 

Ding Xiu-Huan(丁秀欢), Zhang Cun-Xi(张存喜), Wang Rui(王瑞) Zhou Yun-Qing(周运清), and Kong Ling-Min(孔令民) Field-assisted spin-polarized electron transport through a single quantum well with spin–orbit coupling 2012 Chin. Phys. B 21 037302

[1] Tsymbal E Y, Mryasov O and LeClair P R 2003 emphJ. Phys.: emphCondens. Matter 15 R109
[2] vZuti'c I, Fabian J and Das Sarma S 2004 emphRev. Mod. Phys. 76 323
[3] Schmidt G, Ferrand D, Molenkamp L W, Filip A T and van Wees B J 2000 emphPhys. Rev. B 62 R4790
[4] Rashba E I 2000 emphPhys. Rev. B 62 R16267
[5] Voskoboynikov A, Liu S S and Lee C P 1998 emph% Phys. Rev. B 58 15397
[6] Voskoboynikov A, Liu S S and Lee C P 1999 emphPhys. Rev. B 59 12514
[7] Voskoboynikov A, Liu S S, Lee C P and Tretyak O 2000 emphJ. Appl. Phys. 87 387
[8] Ting D Z Y and Cartoixa X 2002 emphAppl. Phys. Lett. 81 4198
[9] Koga T, Nitta J, Takayanagi H and Datta S 2002 emphPhys. Rev. Lett. 88 126601
[10] Shang C E, Guo Y and Chen X Y 2004 emphJ. Appl. Phys. 96 3339
[11] Hall K C, Lau W H, G黡ovgdu K, Flatt? M E and Boggess T F 2003 emphAppl. Phys. Lett. 83 2937
[12] Tarasenko S A, Perel' V I and Yassievich I N 2004 emph% Phys. Rev. Lett. 93, 056601
[13] Perel V I, Tarasenko S A, Yassievich I N, Ganichev S D, Belkov V V and Prettl W 2003 emphPhys. Rev. B 67 201304(R)
[14] Glazov M M, Alekseev P S, Odnoblyudov M A, Chistyakov V M, Tarasenko S A and Yassievich I N 2005 emphPhys. Rev. B 71 155313
[15] Zhang C X, Nie Y H and Liang J Q 2006 emphPhys. Rev. B 73 085307
[16] Ye C Z, Zhang C X, Nie Y H and Liang 2007 emphPhys. Rev. B 76 035345
[17] Zhang C X, Wang R, Nie Y H and Liang J Q 2008 emph% Chin. Phys. B 17 2662
[18] Zhang C X, Nie Y H and Liang J Q 2008 emphChin. Phys. B 17 2670
[19] Hu L Y and Zhou B 2011 emphChin. Phys. B 20 067201
[20] Dresselhaus G 1955 emphPhys. Rev. 100 580
[21] Shirley J H 1965 emphPhys. Rev. 138 B979
[22] Holthaus M and Hone D 1993 emphPhys. Rev. B 47 6499
[23] Fromherz T 1997 emphPhys. Rev. B 56 4772
[24] Li W and Reichl L E 1999 emphPhys. Rev. B 60 15732
[25] Bagwell P F and Lake R K 1992 emphPhys. Rev. B % 46 15329
[26] Landauer R 1989 emphJ. Phys.: emphCondens. Matter 1 8099
[27] Buttiker M 1986 emphPhys. Rev. Lett. 57 1761
[28] Christen T and Buttiker M 1996 emphPhys. Rev. Lett. 77 143
[29] Bulgakov E N and Sadreev A F 1996 emphJ. Phys.: emphCondens. Matter 8 8869
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[14] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[15] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
No Suggested Reading articles found!