Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037102    DOI: 10.1088/1674-1056/21/3/037102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of the local structure and crystal field of Yb2+ in sodium and potassium halides

Wen Jun(闻军)a), Duan Chang-Kui(段昌奎)a)†, Yin Min(尹民)a), Yu. V. Orlovskiib)c), Xia Shang-Da(夏上达)a), and Zhang Yong-Fan(章永凡)d)
a. Department of Physics, University of Science and Technology of China, Hefei 230026, China;
b. Prokhorov General Physics Institute RAS, 38 Vavilov st., Moscow 119991, Russia;
c. Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia;
d. Department of Chemistry, Fuzhou University, Fuzhou 350002, China
Abstract  The local coordination structures around the doping Yb2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model. Both the cases with and without the charge compensation vacancy in the local environment of the doping Yb2+ were calculated to study the effect of the doping on the local coordination structures of Yb2+. Using the calculated local structures, we obtained the crystal-field parameters for the Yb2+ ions doped in sodium and potassium halides by a method based on the combination of the quantum-chemical calculations and the effective Hamiltonian method. The calculated crystal-field parameters were analyzed and compared with the fitted results.
Keywords:  sodium and potassium halides      local coordination structure      distortion      crystal-field parameters  
Received:  26 October 2011      Revised:  10 November 2011      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Eh (Rare earth metals and alloys)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074315, 11074245, 90922022, and 11111120060), the Russian Foundation for Basic Research (Grant No. 11-02-91152), and the European Social Fund (Grant No. MTT50).
Corresponding Authors:  uan Chang-Kui,ckduan@ustc.edu.cn     E-mail:  ckduan@ustc.edu.cn

Cite this article: 

Wen Jun(闻军), Duan Chang-Kui(段昌奎), Yin Min(尹民), Yu. V. Orlovskii, Xia Shang-Da(夏上达), and Zhang Yong-Fan(章永凡) First-principles study of the local structure and crystal field of Yb2+ in sodium and potassium halides 2012 Chin. Phys. B 21 037102

[1] Mao J G 2007 Coord. Chem. Rev. 251 1493
[2] B黱zli J C G 2010 Chem. Rev. 110 2729
[3] Wei X D, Cai L Y, Lu F C, Chen X L, Chen X Y and Liu Q L 2009 Chin. Phys. B 18 3555
[4] Xie R J and Hirosaki N 2007 Sci. Technol. Adv. Mater. 8 588
[5] Shen Y R and Bray K L 1998 Phys. Rev. B 58 11944
[6] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H and Liu X G 2010 Nature 463 1061
[7] Canning A, Chaudhry A, Boutchko R and Jensen N G 2011 Phys. Rev. B 83 125115
[8] Duan C K, Tanner P A, Meijerink A and Makhov V 2011 J. Phys. Chem. A 115 9188
[9] Wei X T, Zhao J B, Chen Y H, Yin M and Li Y 2010 Chin. Phys. B 19 077804
[10] Dorado B, Jomard G, Freyss M and Bertolus M 2010 Phys. Rev. B 82 035114
[11] Singh D J 2010 Phys. Rev. B 82 155145
[12] Andriessen J, van der Kolk E and Dorenbos P 2007 Phys. Rev. B 76 075124
[13] Stephan M, Zachau M, Gröting M, Karplak O, Eyert V, Mishra K C and Schmidt P C 2005 J. Lumin. 114 255
[14] Chen Z L, Zou H M, Zhu X P, Zou J and Cao J F 2011 J. Solid State Chem. 184 1784
[15] Reid M F, Duan C K and Zhou H W 2009 J. Alloys Compd. 488 591
[16] Reid M F, Hu L S, Frank S, Duan C K, Xia S D and Yin M 2010 Eur. J. Inorg. Chem. 18 2649
[17] Hu L S, Reid M F, Duan C K, Xia S D and Yin M 2011 J. Phys.: Condens. Matter 23 045501
[18] Hu L S, Wen J, Xia S D and Yin M 2010 J. Rare Earth. 28 899
[19] Tsuboi T, Witzke H and McClure D S 1981 J. Lumin. 24-25 305
[20] Tsuboi T, McClure D S and Wong W C 1993 Phys. Rev. B 48 62
[21] Duan C K and Tanner P A 2008 J. Phys.: Condens. Matter 20 215228
[22] Kresse G and Furthm黮ler J 1996 Phys. Rev. B 54 11169
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Rosen A and Ellis D E 1975 J. Chem. Phys. 62 3039
[26] Adachi H, Tsukada M and Satoko C 1978 J. Phys. Soc. Japan 45 875
[27] Nickels J E, Fineman M A and Wallance W E 1949 J. Phys. Chem. 53 625
[28] Davey W P 1923 Phys. Rev. 21 143
[29] Finch G J and Fordham S 1936 Pro. Phys. Soc. London 48 85
[30] Walker D, Verma P K, Cranswick L M D, Jones R L, Clark S M and Buhre S 2004 Am. Mineral. 89 204
[31] Ahtee M 1969 Ann. Acad. Sci. Fenn. Series A6: Phys. 311 1
[32] Cortona P 1992 Phys. Rev. B 46 2008
[33] Shannon R D 1976 Acta Cryst. A 32 751
[1] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[2] Tuning charge and orbital ordering in DyNiO3 by biaxial strain
Litong Jiang(姜丽桐), Kuijuan Jin(金奎娟), Wenning Ren(任文宁), and Guozhen Yang(杨国桢). Chin. Phys. B, 2021, 30(11): 117106.
[3] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[4] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
[5] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[6] Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme
Q Mahmood, M Yaseen, K C Bhamu, Asif Mahmood, Y Javed, Shahid M Ramay. Chin. Phys. B, 2018, 27(3): 037103.
[7] Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe2 compounds
Adil Murtaza, Sen Yang(杨森), Chao Zhou(周超), Xiaoping Song(宋晓平). Chin. Phys. B, 2016, 25(9): 096107.
[8] Correction of walk-off-induced wavefront distortion for continuous-wave laser
Hongxin Zou(邹宏新), Guozhu Chen(陈国柱), Yue Wu(伍越), Yong Shen(沈咏), Qu Liu(刘曲). Chin. Phys. B, 2016, 25(9): 094211.
[9] Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides
Qing-Hua Zhang(张庆华), Dong-Dong Xiao(肖东东), Lin Gu(谷林). Chin. Phys. B, 2016, 25(6): 066803.
[10] Possible generation of a γ-ray laser by electrons wiggling in a background laser
Zhang Qi-Ren (张启仁). Chin. Phys. B, 2015, 24(5): 054208.
[11] Multifold polar states in Zn-doped Sr0.9Ba0.1TiO3 ceramics
Guo Yan-Yan (郭艳艳), Guo Yun-Jun (郭云均), Wei Tong (魏通), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(12): 127701.
[12] Design and development of high linearity millimeter wave traveling-wave tube for satellite communications
He Jun (何俊), Huang Ming-Guang (黄明光), Li Xian-Xia (李现霞), Li Hai-Qiang (李海强), Zhao Lei (赵磊), Zhao Jian-Dong (赵建东), Li Yue (李跃), Zhao Shi-Lei (赵石雷). Chin. Phys. B, 2015, 24(10): 104102.
[13] Relation between martensitic transformation temperature range and lattice distortion ratio of NiMnGaCoCu Heusler alloys
Wei Jun (韦俊), Xie Ren (谢忍), Chen Le-Yi (陈乐易), Tang Yan-Mei (唐研梅), Xu Lian-Qiang (许连强), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(4): 048107.
[14] Magnetizations and magneto-transport properties of Ni-doped PrFeO3 thin films
Feroz A. Mir, S. K. Sharma, Ravi Kumar. Chin. Phys. B, 2014, 23(4): 048101.
[15] Quantum electrodynamics in a laser and the electron laser collision
Zhang Qi-Ren (张启仁). Chin. Phys. B, 2014, 23(1): 010306.
No Suggested Reading articles found!