Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 034101    DOI: 10.1088/1674-1056/21/3/034101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler

Maryam Zahedian, B. Maraghechi, and M.H. Rouhani
Department of Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
Abstract  A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented. The two beams are assumed to have different energies, and the fundamental resonance of the higher energy beam is at the third harmonic of the lower energy beam. By using Maxwell's equations and the full Lorentz force equation of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth-order Runge-Kutta method. The amplitude of the wiggler field is assumed to decrease nonlinearly when the saturation of the third harmonic occurs. By simulation, the optimum starting point of the tapering and the slopes for reducing the wiggler amplitude are found. This technique can be applied to substantially improve the efficiency of the two-beam FEL in the XUV and X-ray regions. The effect of tapering on the dynamical stability of the fast electron beam is also studied.
Keywords:  free-electron lasers      harmonic generation      Kolmogorov entropy      efficiency enhancement  
Received:  02 August 2011      Revised:  06 September 2011      Accepted manuscript online: 
PACS:  41.60.Cr (Free-electron lasers)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  02.60.Cb (Numerical simulation; solution of equations)  
  94.20.wj (Wave/particle interactions)  
Corresponding Authors:  B. Maraghechi,behrouz@aut.ac.ir     E-mail:  behrouz@aut.ac.ir

Cite this article: 

Maryam Zahedian, B. Maraghechi, and M.H. Rouhani Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler 2012 Chin. Phys. B 21 034101

[1] O'Shea P G and Freund H P 2001 Science 292 1853
[2] Krishnagopal S, Kumar V, Maiti S, Prabhu S S and Sarkar S K 2004 Curr. Sci. 87 1066
[3] McNeil B 2009 Nat. Photonics 3 375
[4] Singer A, Vartanyants I A, Kuhlmann M, Duesterer S, Treusch R and Feldhaus J 2008 Phys. Rev. Lett. 101 254801
[5] Lambert G, Hara T, Garzella D, Tanikawa T, Labat M, Carre B, Tikamura H, Shintake T, Bougeard M, Inoue S, Tanaka Y, Salieres P, Merdji H, Chubar O, Gobert O, Tahara K and Couprie M E 2008 Nat. Phys. 4 296
[6] Yu L H, Babzien M, Ben-Zvi I, DiMauro L F, Doyuran A, Graves W, Johnson E, Krinsky S, Malone R, Pogorelsky I and Skaritka J 2000 Science 289 932
[7] Xiang D and Stupakov G 2009 Phys. Rev. ST Accel. Beams 12 030702
[8] Stupakov G 2009 Phys. Rev. Lett. 102 074801
[9] McNeil B W J, Robb G R M and Poole M W 2004 Phys. Rev. E 70 035501
[10] Rouhani M H and Maraghechi 2010 Phys. Rev. ST Accel. Beams 13 080706
[11] Rouhani M H and Maraghechi B 2009 Phys. Plasmas 16 093110
[12] Freund H P and Antonsen J M 1996 Principles of Free Electron Laser (2nd Edn.) (London: Chapman and Hall) Chap. 5
[13] Rouhani M H, Maraghechi B and Saberi H 2009 Phys. Plasmas 16 123105
[14] Kroll N M, Morton P L and Rosenbluth M N 1981 IEEE J. Quantum Electron 17 1436
[15] Tabor M 1989 Chaos and Integrability in Nonlinear Dynamics (New York: Wiley)
[16] Salehi E, Maraghechi B and Rouhani M H 2010 Phys. Plasmas 17 113102
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[4] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[7] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[8] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[9] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[10] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[11] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[12] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[13] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[14] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[15] Attosecond spectroscopy for filming the ultrafast movies of atoms, molecules and solids
Lixin He(何立新), Xiaosong Zhu(祝晓松), Wei Cao(曹伟), Pengfei Lan(兰鹏飞), and Peixiang Lu(陆培祥). Chin. Phys. B, 2022, 31(12): 123301.
No Suggested Reading articles found!