Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 047803    DOI: 10.1088/1674-1056/21/4/047803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The concentration quenching and crystallographic sites of Eu2+ in Ca2BO3Cl

Li Pan-Lai(李盼来)a)b)c), Xu Zheng(徐征)a)b)†, Zhao Su-Ling(赵谡玲)a)b), Wang Yong-Sheng(王永生)a)b), and Zhang Fu-Jun(张福俊)a)b)
a. Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China;
b. Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China;
c. College of Physics Science & Technology, Hebei University, Baoding 071002, China
Abstract  A yellow phosphor, Ca2BO3Cl:Eu2+, is prepared by the high-temperature solid-state method. Under the condition of excitation sources ranging from ultraviolet to visible light, efficient yellow emission can be observed. The emission spectrum shows an asymmetrical single intensive band centred at 573 nm, which corresponds to the 4f,65d1→4f,7 transition of Eu2+. Eu2+ ions occupy two types of Ca2+ sites in the Ca2BO3Cl lattice and form two corresponding emission centres, respectively, which lead to the asymmetrical emission of Eu2+ in Ca2BO3Cl. The emission intensity of Eu2+ in Ca2BO3Cl is influenced by the Eu2+ doping concentration. Concentration quenching is discovered, and its mechanism is verified to be a dipole-dipole interaction. The value of the critical transfer distance is calculated to be 2.166 nm, which is in good agreement with the 2.120 nm value derived from the experimental data.
Keywords:  luminescence      Ca2BO3Cl:Eu2+      concentration quenching      crystallographic sites  
Received:  25 August 2011      Revised:  09 October 2011      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  33.20.Kf (Visible spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974013, 60978060, and 10804006), the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20090009110027), the Beijing Municipal Natural Science Foundation, China (Grant No. 1102028), the National Basic Research Program of China (Grant No. 2010CB327704), the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 60825407), the Beijing Municipal Science and Technology Commission, China (Grant No. Z090803044009001), the Science Fund of the Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, China (Grant No. 2010LOI12), and the Excellent Doctor’s Science and Technology Innovation Foundation of Beijing Jiaotong University, China (Grant No. 2011YJS073).
Corresponding Authors:  Xu Zheng,zhengxu@bjtu.edu.cn     E-mail:  zhengxu@bjtu.edu.cn

Cite this article: 

Li Pan-Lai(李盼来), Xu Zheng(徐征), Zhao Su-Ling(赵谡玲), Wang Yong-Sheng(王永生), and Zhang Fu-Jun(张福俊) The concentration quenching and crystallographic sites of Eu2+ in Ca2BO3Cl 2012 Chin. Phys. B 21 047803

[1] Lin H W, Lu Y J, Chen H Y, Lee H M and Gwo S 2010 Appl. Phys. Lett. 97 073101
[2] Kim T G, Lee H S, Lin C C, Kim T, Liu R S, Chan T S and Im S J 2010 Appl. Phys. Lett. 96 061904
[3] Tang H X and Lü S C 2011 Acta Phys. Sin. 60 037805 (in Chinese)
[4] Yu R J, Wang J, Zhang J H and Su Q 2011 J. Electrochem. Soc. 158 J86
[5] Zhang Z, Wang J, Zhang M, Zhang Q and Su Q 2008 Appl. Phys. B 91 529
[6] Guo C, Luan L, Ding X, Zhang F, Shi F G, Gao F and Liang L 2009 Appl. Phys. B 95 779
[7] Yu J, Guo C F, Ren Z Y and Bai J T 2011 Opt. & Laser Tech. 43 762
[8] Du H, Sun J, Xia Z and Sun J 2009 Appl. Phys. B 96 459
[9] Sivakumar V and Varadaraju V 2009 J. Electrochem. Soc. 156 J179
[10] Ding W J, Wang J, Liu Z M, Zhang M, Su Q and Tang J K 2008 J. Electrochem. Soc. 155 J122
[11] Song Y H, Jia G, Yang M, Huang Y J, Hou H P and Zhang H J 2009 Appl. Phys. Lett. 94 091902
[12] Tang Y S, Hu S F, Ke W C, Lin C C, Bagkar N C and Liu R S 2008 Appl. Phys. Lett. 93 131114
[13] Zhang X M, Park B, Kim J, Lee J and Choi J 2010 J. Lumin. 130 117
[14] Ding X, Xu Y and Guo C F 2010 Acta Phys. Sin. 59 6632 (in Chinese)
[15] Guo C F, Xu Y, Ding X, Li M, Yu J, Ren Z Y and Bai J T 2011 J. Alloys Compd. 509 L38
[16] Xia Z G, Du H Y, Sun J Y, Chen D M and Wang X F 2010 Mater. Chem. Phys. 119 7
[17] Yang Z P, Wang S L, Yang G W, Tian J, Li P L and Li X 2007 Mater. Lett. 61 5258
[18] Guo C F, Luan L, Shi F G and Ding X 2009 J. Electrochem. Soc. 156 J125
[19] Xiao F, Xue Y N and Zhang Q Y 2009 Physica B: Condensed Matter 404 3743
[20] Guo C F, Luan L, Shi L and Seo H J 2010 Electrochem. Solid-State Lett. 13 J28
[21] Wang Z J, Yang Z P, Guo Q L, Li P L and Fu G S 2009 Chin. Phys. B 18 2068
[22] Blasse G 1986 J. Solid State Chem. 62 207
[23] Dexter D L 1953 J. Chem. Phys. 21 836
[24] Van Uitert L G 1967 J. Electrochem. Soc. 114 1048
[25] Ozawa L and Jaffe P M 1971 J. Electrochem. Soc. 118 1678
[26] Zak Z and Hanic F 1976 Acta Cryst. Sect. B 32 1784
[27] Huang Z P, Jing X P and Yu H 1986 Chem. J. Chin. Univer. 7 759 (in Chinese)
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[11] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[12] Laser-modified luminescence for optical data storage
Xin Wei(魏鑫), Weiwei Zhao(赵伟玮), Ting Zheng(郑婷), Junpeng Lü(吕俊鹏), Xueyong Yuan(袁学勇), and Zhenhua Ni(倪振华). Chin. Phys. B, 2022, 31(11): 117901.
[13] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[14] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[15] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
No Suggested Reading articles found!