Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 045201    DOI: 10.1088/1674-1056/21/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

The effects of relativistic broadening and frequency down-shift on electron–cyclotron emission measurements in EAST

Liu Yong(刘永), Han Xiang(韩翔), Ti Ang(提昂), Wang Yu-Min(王嵎民) Ling Bi-Li(凌必利), Hu Li-Qun(胡立群), and Gao Xiang(高翔)
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  This paper presents a theoretical calculation of the effects of relativistic broadening and frequency down-shift on the electron cyclotron emission measurements for a wide range of plasma parameters in the Experimental Advanced Superconducting Tokamak (EAST). The calculation is based on the radiation transfer equation, with the reabsorption and reemission processes taken into account. The broadening effect contributes to the radial resolution of the measurement, and the calculation results indicate that it is ~2 cm in the case of the central electron temperature 10 keV. A pseudo radial displacement of the obtained electron temperature profile occurs if the relativistic frequency down-shift effect is not taken into account in the determination of the emission layer position. The shift could be a few centimeters as the electron temperature increases, and this effect should be taken into account.
Keywords:  electron-cyclotron emission      relativistic effect      experimental advanced superconducting tokamak  
Received:  24 June 2011      Revised:  16 September 2011      Accepted manuscript online: 
PACS:  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  52.70.Gw (Radio-frequency and microwave measurements)  
Fund: Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y05FCQ0125) and the National Magnetic Confinement Fusion Science Program of China (Grant No. 2011GB107001).
Corresponding Authors:  Liu Yong,liuyong@ipp.ac.cn     E-mail:  liuyong@ipp.ac.cn

Cite this article: 

Liu Yong(刘永), Han Xiang(韩翔), Ti Ang(提昂), Wang Yu-Min(王嵎民) Ling Bi-Li(凌必利), Hu Li-Qun(胡立群), and Gao Xiang(高翔) The effects of relativistic broadening and frequency down-shift on electron–cyclotron emission measurements in EAST 2012 Chin. Phys. B 21 045201

[1] Lichtenberg A J, Sesnic S and Trivelpiece A W 1964 Phys. Rev. Lett. 13 387
[2] TFR Group 1975 in Controlled Fusion and Plasma Physics (Proc. 7th Europ. Conf. Lausanne, 1975) Vol. 1 14b
[3] Hutchinson I H and Komm D S 1977 Nucl. Fusion 17 1077
[4] Kato K and Hutchinson I H 1986 Phys. Rev. Lett. 56 340
[5] Kato K and Hutchinson I H 1987 Phys. Fluids 30 3809
[6] Sozzi C, Luna E D L, Farina D, Fessey J, Figini L, Garavaglia S, Grossetti G, Nowak S, Platania P, Simonetto A, Zerbini M and JET EFDA contributors 2008 AIP Conf. Proc. 988, Buring Plasma Diagnostics p. 73
[7] Isayama A, Kamada Y, Ozeki T and Isei N 1999 Plasma Phys. Control. Fusion 41 35
[8] Ryter F, Angioni C, Beurskens M, Cirant S, Hoang G T, Hogeweij G M D, Imbequx F, Jacchia A, Mantica P, Suttrop W and Tardini G 2001 Plasma Phys. Control. Fusion 43 A323
[9] Li E Z, Ling B L, Liu Y, Ti A, Hu L Q and Gao X 2010 Chin. Phys. B 19 035203
[10] Sato M, Isei N and Ishida S 1995 Jpn. J. Appl. Phys. 34 L708
[11] Sato M, Isei N, Ishida S and Isayama A 1998 J. Phys. Soc. Jpn. 67 3090
[12] Songtao W and the EAST Team 2007 Fusion Engineering and Design 82 463
[13] Bekefi G 1966 Radiation Processes in Plasmas (New York: John Wiley and Sons) Chap. 1
[14] Bornatici M, Cano R, Barbieri O D and Engelmann F 1983 Nucl. Fusion 23 1153
[15] Bornatici M, Engelmann F and Ruffina U 1983 Sov. J. Quantum Electron 13 68
[16] Private Communication with proffesor Weiyue Wu (Tokamak Design Division, Institute of Plasma Physics)
[1] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[2] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[3] Nonlinear ion-acoustic solitary waves in an electron-positron-ion plasma with relativistic positron beam
Ridip Sarma, Amar P Misra, Nirab C Adhikary. Chin. Phys. B, 2018, 27(10): 105207.
[4] Relativistic and distorted wave effects on Xe 4d electron momentum distributions
Minfu Zhao(赵敏福), Xu Shan(单旭), Shanshan Niu(牛姗姗), Xiangjun Chen(陈向军). Chin. Phys. B, 2017, 26(9): 093103.
[5] Relativistic correction of (v/c)2 to the collective Thomson scattering for high-temperature high-density plasma
Jiang Chen-Fan-Fu(蒋陈凡夫), Zheng Jian(郑坚), and Zhao Bin(赵斌) . Chin. Phys. B, 2011, 20(9): 095202.
[6] Valence orbitals of W(CO)6 using electron momentum spectroscopy
Shi Le-Lei(石砳磊), Liu Kun(刘昆), Luo Zhi-Hong(罗志宏), Ning Chuan-Gang(宁传刚), and Deng Jing-Kang(邓景康) . Chin. Phys. B, 2011, 20(11): 113403.
[7] Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field
Men Fu-Dian(门福殿), Liu Hui(刘慧), Fan Zhao-Lan(范召兰), and Zhu Hou-Yu(朱后禹). Chin. Phys. B, 2009, 18(7): 2649-2653.
No Suggested Reading articles found!