Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 044213    DOI: 10.1088/1674-1056/21/4/044213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Low group velocity in a photonic crystal coupled-cavity waveguide

Zhang Chang-Xin(张昌莘)a)b) and Xu Xing-Sheng(许兴胜)a)†
a. State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b. Department of Physics, Guangdong University of Petrochemical, Maoming 525000, China
Abstract  A two-dimensional photonic crystal coupled-cavity waveguide is designed and optimized, the transmission spectrum is calculated by using the finite-difference time-domain method, and the group velocity of c/1856 is obtained. To our knowledge, this value of group velocity is the lowest group velocity in a photonic crystal waveguide calculated from its transmission spectrum so far. The result is confirmed by the photonic band structure calculated by using the plane wave expansion method, and it is found that the photonic crystal waveguide modes in a photonic band structure are in accordance with those in the transmission spectrum by using the finite-difference time-domain method. The mechanism of slow light in the coupled-cavity waveguide of photonic crystal is analysed.
Keywords:  photonic crystal wavguide      coupled cavity      slow light  
Received:  26 July 2011      Revised:  03 November 2011      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.79.Gn (Optical waveguides and couplers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60877030), the National High Technology Research and Development Program of China (Grant No. 2009AA03Z406), the Program of Visiting Professor for Senior International Scientists of the Chinese Academy of Sciences (Grant No. 2009G2-17), and the Science and Technology Program of Guangdong Province, China (Grant No. 2010B080701066).
Corresponding Authors:  Xu Xing-Sheng,xsxu@ustc.edu     E-mail:  xsxu@ustc.edu

Cite this article: 

Zhang Chang-Xin(张昌莘) and Xu Xing-Sheng(许兴胜) Low group velocity in a photonic crystal coupled-cavity waveguide 2012 Chin. Phys. B 21 044213

[1] Boyd R W, Gauthier D J and Gaeta A L 2006 Opt. Photon. News 17 19
[2] Altug H, Vuvcović J 2005 Opt. Express 13 8819
[3] Notomi M, Yamada K, Shinya A, Takahashi J, Takahashi C and Yokohama I 2001 Phys. Rev. Lett. 87 253902
[4] Asano T, Kiyota K, Kumamoto D, Song B S and Noda S 2004 Appl. Phys. Lett. 84 4690
[5] Vlasov Y A, O'Boyle M, Hamann H F and McNab S J 2005 Nature 438 65
[6] Vlasov Y A and McNab S J 2006 Opt. Lett. 31 50
[7] Baba T, Kawasaki T, Sasaki H, Adachi J and Mori D 2008 Opt. Express 16 9245
[8] Feng S and Wang Y Q 2011 Chin. Phys. B 20 054209
[9] Li J, White T P, O'Faolain L, Gomez-Iglesias A and Krauss T F 2008 Opt. Express 16 6227
[10] J醙ersk? J, Thomas N L, Zabelin V, Houdré R, Bogaerts W, Dumon P and Baets R 2009 Opt. Lett. 34 359
[11] Du X Y, Zheng W H, Zhang Y J, Ren G, Wang K, Xing M X and Chen L H 2008 Acta Phys. Sin. 57 7005 (in Chinese)
[12] Grgic J, Pedersen J G, Xiao S and Mortensen N A 2010 Photonics and Nanostructures 8 56
[13] Karle T J, Chai Y J, Morgan C N, White I H and Krauss T F 2004 J. Lightwave Technal. 22 514
[14] Krauss T F 2007 J. Phys. D: Appl. Phys. 40 2666
[15] Chen Q and Allsopp D W E 2009 J. Opt. A: Pure Appl. Opt. 11 054010
[16] Md Zain A R, Johnson N P, Sorel M and de la Rue R M 2008 Opt. Express 16 12084
[17] Frandsen L H, Lavrinenko A V, Fage-Pedersen J and Borel P I 2006 Opt. Express 14 9444
[18] Lin C Y, Wang X L, Chakravarty S, Lee B S, Lai W C and Chen R T 2010 Appl. Phys. Lett. 97 183302
[19] Mulot M, Säynätjoki A, Arpiainen S, Lipsanen H and Ahopelto J 2007 J. Opt. A: Pure Appl. Opt. 9 S415
[1] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[2] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[3] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[4] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[5] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[6] Broadrange tunable slow and fast light in quantum dot photonic crystal structure
Alireza Lotfian, Reza Yadipour, Hamed Baghban. Chin. Phys. B, 2017, 26(12): 124207.
[7] Dynamic control of the terahertz rainbow trapping effect based on a silicon-filled graded grating
Shu-Lin Wang(王书林), Lan Ding(丁岚), Wen Xu(徐文). Chin. Phys. B, 2017, 26(1): 017301.
[8] Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube
Fang-ming He(何昉明), Wen-qiu Xie(谢文球), Ji-run Luo(罗积润), Min Zhu(朱敏), Wei Guo(郭炜). Chin. Phys. B, 2016, 25(3): 038401.
[9] Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity
Guo Yu-Jie (郭玉杰), Nie Wen-Jie (聂文杰). Chin. Phys. B, 2015, 24(9): 094205.
[10] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[11] Ghost imaging with broad distance
Duan De-Yang (段德洋), Zhang Lu (张路), Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(10): 104203.
[12] Single photon transport properties in coupled cavity arrays nonlocally coupled to a two-level atom in the presence of dissipation
Hai Lian (海莲), Tan Lei (谭磊), Feng Jin-Shan (冯金山), Xu Wen-Bin (徐文斌), Wang Bin (王彬). Chin. Phys. B, 2014, 23(2): 024202.
[13] Controllable beating signal using stored light pulse
Wang Lei (王磊), Yang Qing-Yu (杨庆禹), Wang Xiao-Xiao (王潇潇), Luo Meng-Xi (罗梦希), Fan Yun-Fei (范云飞), Kang Zhi-Hui (康智慧), Dai Tian-Yuan (戴天缘), Bi Sheng (毕升), Wang Hai-Hua (王海华), Wu Jin-Hui (吴金辉), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2014, 23(1): 014205.
[14] Rainbow trapping based on long-range plasmonic Bragg gratings at telecom frequencies
Chen Lin (陈林), Zhang Tian (张天), Li Xun. Chin. Phys. B, 2013, 22(7): 077301.
[15] Mode stability analysis in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain
Luo Ji-Run (罗积润), Cui Jian (崔健), Zhu Min (朱敏), Guo Wei (郭炜). Chin. Phys. B, 2013, 22(6): 067803.
No Suggested Reading articles found!