Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017807    DOI: 10.1088/1674-1056/21/1/017807
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Partial electrical potential distribution around nanospheres in metallic nanostructured films

You Rong-Yi(游荣义) and Huang Xiao-Jing(黄晓菁)
Department of Physics, School of Science, Jimei University, Xiamen 361021, China
Abstract  In light of the nanostructured surface model, where half-spherical nanoparticles grow out symmetrically from a plane metallic film, the mathematical model for the partial electrical potential around nanospheres is developed when a uniform external electric field is applied. On the basis of these models, the three-dimensional spatial distribution of the partial electrical potential is obtained and given in the form of a curved surface using a numerical computation method. Our results show that the electrical potential distribution around the nanospheres exhibits an obvious geometrical symmetry. These results could serve as a reference for investigating many abnormal phenomena such as abnormal infrared effects, which are found when CO molecules are adsorbed on the surface of nanostructured transition metals.
Keywords:  partial electrical potential      nanosphere      metallic nanostructured film  
Received:  19 July 2011      Revised:  15 August 2011      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2010J01210).

Cite this article: 

You Rong-Yi(游荣义) and Huang Xiao-Jing(黄晓菁) Partial electrical potential distribution around nanospheres in metallic nanostructured films 2012 Chin. Phys. B 21 017807

[1] Kim J H, Kang G, Nam Y and Choi Y K 2010 Nanotechnology 21 085303
[2] Ioroi T, Yasuda K, Siroma Z, Fujiwara N and Miyazaki Y 2002 J. Power Source 112 583
[3] Lindström R W, Seidel Y E, Jusys Z, Gustavsson M, Wickman B, Kasemo B and Behm R J 2010 J. Electroanal. Chem. 664 90
[4] Niu Z Q, Ma W J, Dong H B, Li J Z and Zhou W Y 2011 Chin. Phys. B 20 028101
[5] Fu J X, Hua Y L, Chen Y H, Liu R J, Li J F and Li Z Y 2011 Chin. Phys. B 20 037806
[6] Guan Z Q, Yutaka A, Jiang D H, Lin H, Yoshitake Y and Wu C X 2004 Chin. Phys. 13 105
[7] Kim S W and Kim S 2001 Phys. Rev. B 63 212301
[8] Lin W G, Sun S G, Zhou Z Y, Chen S P and Wang H C 2002 J. Phys. Chem. B 106 11778
[9] Pinchuk A, Kreibig U and Hilger A 2004 Surf. Sci. 557 269
[10] Chou K C, Westerberg S, Shen Y R, Ross P N and Somorjai G A 2004 Phys. Rev. B 69 153413
[11] Chen W, Sun S G, Zhou Z Y and Chen S P 2003 J. Phys. Chem. B 107 9808
[12] Patthey F, Schaffner M H, Schneider W D and Delley B 1999 Phys. Rev. Lett. 82 2971
[13] Ujsaghy O, Kroha J, Szunyogh L and Zawadowski A 2000 Phys. Rev. Lett. 85 2557
[14] Huang X J, He S Z and Wu C X 2006 Chin. Phys. 15 2389
[15] Crljen Z and Langreth D C 1987 Phys. Rev. B 35 4224
[16] Huang X J , Wu C X, Chen Y J, Lin H, Jiang D H and Sun S G 2005 Acta Phys. Sin. 54 429 (in Chinese)
[1] Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation
Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 096104.
[2] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[3] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[4] Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(9): 097303.
[5] Large-scale SiO2 photonic crystal for high efficiency GaN LEDs by nanospherical-lens lithography
Wu Kui (吴奎), Wei Tong-Bo (魏同波), Lan Ding (蓝鼎), Zheng Hai-Yang (郑海洋), Wang Jun-Xi (王军喜), Luo Yi (罗毅), Li Jin-Min (李晋闽). Chin. Phys. B, 2014, 23(2): 028504.
[6] Enhanced light emission from InGaN/GaN quantum wells by using surface plasmonic resonances of silver nanoparticle array
Chen Zhan-Xu (陈湛旭), Wan Wei (万巍), Zhang Bai-Jun (张佰君), He Ying-Ji (何影记), Jin Chong-Jun (金崇君). Chin. Phys. B, 2014, 23(12): 128504.
[7] Enhancing light extraction of GaN-based blue light-emitting diodes by a tuned nanopillar array
Chen Zhan-Xu (陈湛旭), Ren Yuan (任远), Xiao Guo-Hui (肖国辉), Li Jun-Tao (李俊韬), Chen Xia (陈夏), Wang Xue-Hua (王雪华), Jin Chong-Jun (金崇君), Zhang Bai-Jun (张佰君). Chin. Phys. B, 2014, 23(1): 018502.
[8] Nonlinear optical behaviours in a silver nanoparticle array at different wavelengths
Yu Ben-Hai (余本海), Zhang Dong-Ling (张东玲), Li Ying-Bin (李盈傧), Tang Qing-Bin (汤清彬). Chin. Phys. B, 2013, 22(1): 014212.
[9] Highly sensitive room-temperature gas sensors based on hydrothermal synthesis of Cr2O3 hollow nanospheres
Li Sheng(李盛), Li Feng-Li(李凤丽), Zhou Shao-Min(周少敏), Wang Peng(王鹏), Cheng Ke(程轲), and Du Zu-Liang(杜祖亮). Chin. Phys. B, 2009, 18(9): 3985-3989.
[10] Anomalous aggregation growth of palladium nanosphere with SPR band in visible range
Xiao Cong-Wen(肖从文), Shen Cheng-Min(申承民), Xu Zhi-Chuan(徐梽川), Yang Tian-Zhong(杨天中), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2008, 17(6): 2066-2071.
No Suggested Reading articles found!