Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 014203    DOI: 10.1088/1674-1056/21/1/014203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Quantum correlations between two non-interacting atoms under the influence of a thermal environment

Hu Yao-Hua(胡要花) and Wang Jun-Qiang(王军强)
College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, China
Abstract  By considering a double Jaynes-Cummings model, we investigate the dynamics of quantum correlations, such as the quantum discord and the entanglement, for two atoms in their respective noisy environments, and study the effect of the purity and the cavity temperature on the quantum correlations. The results show that the entanglement suffers sudden death and revival, however the quantum discord can still reveal the quantum correlations between the two atoms in the region where the entanglement is zero. Moreover, when the temperature of each cavity is high the entanglement dies out in a short time, but the quantum discord still survives for quite a long time. It means that the quantum discord is more resistant to environmental disturbance than the entanglement at higher temperatures.
Keywords:  quantum discord      entanglement      double Jaynes-Cummings model  
Received:  27 May 2011      Revised:  19 June 2011      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978011 and 10905028), the Program for Science and Technology Department of Henan Province, China (Grant No. 102300410050), and the Cultivation Fund of Luoyang Normal Colle

Cite this article: 

Hu Yao-Hua(胡要花) and Wang Jun-Qiang(王军强) Quantum correlations between two non-interacting atoms under the influence of a thermal environment 2012 Chin. Phys. B 21 014203

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Lettner M, Mücke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Dürr S and Rempe G 2011 Phys. Rev. Lett. 106 210503
[4] Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
[5] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[6] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[7] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[8] Datta A 2009 Phys. Rev. A 80 052304
[9] Sarandy M S 2009 Phys. Rev. A 80 022108
[10] Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
[11] Luo S and Sun W 2010 Phys. Rev. A 82 012338
[12] Madhok V and Datta A 2010 arXiv:1008.4135
[13] Lu X M, Ma J, Xi Z and Wang X 2011 Phys. Rev. A 83 012327
[14] Galve F, Giorgi G L and Zambrini R 2011 Phys. Rev. A 83 012102
[15] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[16] Streltsov A, Kampermann H and Bruss D 2011 Phys. Rev. Lett. 106 160401
[17] Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306
[18] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[19] Chakrabarty I, Agrawal P and Pati A K 2010 arXiv: 1006.5784
[20] Yönac M and Eberly J H 2008 Opt. Lett. 33 270
[21] Yönac M, Yu T and Eberly J H 2007 J. Phys. B 40 S45
[22] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[23] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Riberio P H and Davidovich L 2007 Science 316 579
[24] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[25] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[26] Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acin A 2010 Phys. Rev. A 81 052318
[27] Liu B Q, Shao B and Zou J 2010 Phys. Rev. A 82 062119
[28] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[29] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[30] Kim M S, Lee J, Ahn D and Knight P L 2002 Phys. Rev. A 65 040101
[31] Hill S 1997 Phys. Rev. Lett. 78 5022
[32] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[33] Vedral V 2002 Rev. Mod. Phys. 74 197
[34] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[35] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[36] Werner R F 1989 Phys. Rev. A 40 4277
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!