Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 010502    DOI: 10.1088/1674-1056/21/1/010502
GENERAL Prev   Next  

Chaos-based encryption for fractal image coding

Yuen Ching-Hung(袁正雄) and Wong Kwok-Wo(黄国和)
Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
Abstract  A chaos-based cryptosystem for fractal image coding is proposed. The Rényi chaotic map is employed to determine the order of processing the range blocks and to generate the keystream for masking the encoded sequence. Compared with the standard approach of fractal image coding followed by the Advanced Encryption Standard, our scheme offers a higher sensitivity to both plaintext and ciphertext at a comparable operating efficiency. The keystream generated by the Rényi chaotic map passes the randomness tests set by the United States National Institute of Standards and Technology, and so the proposed scheme is sensitive to the key.
Keywords:  chaos      cryptography      joint image compression and encryption;fractal image coding  
Received:  25 July 2011      Revised:  18 August 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Df (Fractals)  
Fund: Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. CityU 123009).

Cite this article: 

Yuen Ching-Hung(袁正雄) and Wong Kwok-Wo(黄国和) Chaos-based encryption for fractal image coding 2012 Chin. Phys. B 21 010502

[1] Wang Y, Wong K W, Liao X F and Chen G R 2011 Appl. Soft. Comput. 11 514
[2] Chen G R, Mao Y B and Chui C K 2004 Chaos Soliton. Fract. 21 749
[3] Wong K W, Kwok B S H and Law W S 2008 Phys. Lett. A 372 2645
[4] Wang Y, Wong K W, Liao X F, Xiang T and Chen G R 2009 Chaos Soliton. Fract. 41 1773
[5] Sun F Y and Lu Z W 2011 Chin. Phys. B 20 040506
[6] Chang H K C and Liu J L 1997 Signal Processing: Image Communication 10 279
[7] Lian S G 2009 Chaos Soliton. Fract. 40 2509
[8] Wu C P and Kuo C C J 2005 IEEE T. Multimedia 7 828
[9] Krikor L, Baba S, Arif T and Shaaban Z 2009 European Journal of Scientific Research 32 47
[10] Ge X, Liu F L, Lu B, Wang W and Chen J 2010 Proceedings of the 2nd IEEE International Conference on Information Management and Engineering, April 16-18, 2010 Chengdu China p. 267
[11] Bouboulis P and Dalla L 2005 Fractals 13 227
[12] Drakopoulos V, Bouboulis P and Theodoridis S 2006 Fractals 14 259
[13] He C, Xu X and Yang J 2006 Chaos Soliton. Fract. 27 1178
[14] Curtis K M, Neil G and Fotopoulos V 2002 Proceedings of the 14th International Conference on Digital Signal Processing 2 1337
[15] Lian S G, Chen X and Ye D P 2009 Fractals 17 149
[16] Addabbo T, Alioto M, Fort A, Pasini A and Rocchi S 2007 IEEE T. Circuits-I 54 816
[17] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J and Vo S 2010 A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications
[18] Jacquin A E 1989 PhD Thesis Georgia Institute of Technology 2225
[19] Jacquin A E 1992 IEEE T. Image Process. 1 18
[20] Jacquin A E 1993 Proc. IEEE 81 1451
[21] Fisher Y 1995 Fractal Image Compression Theory and Application (New York: Springer-Verlag)
[22] Sun K H, He S B and Sheng L Y 2011 Acta Phys. Sin. 60 020505 (in Chinese)
[23] Xu X Z and Guo J B 2011 Acta Phys. Sin. 60 020510 (in Chinese)
[24] Wong K W and Yuen C H 2008 IEEE T. Circuits-II 55 1193
[25] Mi B, Liao X F and Chen Y 2008 Chaos Soliton. Fract. 38 1523
[26] Wang F L 2010 Chin. Phys. B 19 090505
[27] Liu S B, Sun J, Xu Z Q and Liu J S 2009 Chin. Phys. B 18 5219
[28] Addabbo T, Alioto M, Fort A, Rocchi S and Vignoli V 2006 IEEE T. Circuits-II 53 329
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[10] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[11] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[12] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[15] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
No Suggested Reading articles found!