Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 010501    DOI: 10.1088/1674-1056/21/1/010501
GENERAL Prev   Next  

Oscillating Casimir force between two slabs in a Fermi sea

Chen Li-Wei(陈礼炜)a), Su Guo-Zhen(苏国珍)a)†, Chen Jin-Can(陈金灿)a), and Andresen Bjarneb)
a Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China; b Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
Abstract  The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas. In contrast to the familiar result that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on the magnitude of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force increases linearly with the increase of the temperature in the region T < Tc, where Tc is the critical temperature of the Bose-Einstein condensation.
Keywords:  Casimir effect      Fermi gas      parallel slab      oscillation  
Received:  28 June 2011      Revised:  16 August 2011      Accepted manuscript online: 
PACS:  05.30.-d (Quantum statistical mechanics)  
  03.75.Ss (Degenerate Fermi gases)  
  05.30.Fk (Fermion systems and electron gas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875100) and the Natural Science Foundation of Fujian Province, China (Grant No. A1010016).

Cite this article: 

Chen Li-Wei(陈礼炜), Su Guo-Zhen(苏国珍), Chen Jin-Can(陈金灿), and Andresen Bjarne Oscillating Casimir force between two slabs in a Fermi sea 2012 Chin. Phys. B 21 010501

[1] Casimir H B G 1948 Proc. Ned. Akad. Wet. B 51 793
[2] Sparnaay M J 1958 Physica 24 751
[3] Lamoreaux S K 1997 Phys. Rev. Lett. 78 5
[4] Mohideen U and Roy A 1998 Phys. Rev. Lett. 81 4549
[5] Bressi G, Carugno G, Onofrio R and Ruoso G 2002 Phys. Rev. Lett. 88 041804
[6] Antonini P, Bressi G, Carugno G, Galeazzi G, Messineo G and Ruoso G 2006 New J. Phys. 8 239
[7] Petrov V, Petrov M, Bryksin V, Petter J and Tschudi T J 2007 Exp. Theor. Phys. 104 96
[8] Casadio R, Gruppuso A, Harms B and Micu O 2007 Phys. Rev. D 76 025016
[9] Zhai X H and Li X Z 2007 Phys. Rev. D 76 047704
[10] Alves D T and Granhen E R 2008 Phys. Rev. A 77 015808
[11] Lim S C and Teo L P 2009 New J. Phys. 11 013055
[12] Bai Z W 2004 Acta Phys. Sin. 53 2472 (in Chinese)
[13] Zeng R, Yang Y P and Liu S T 2008 Acta Phys. Sin. 57 4947 (in Chinese)
[14] Larraza B and Denardo B 1998 Phys. Lett. A 248 151
[15] Martin P A and Zagrebnov V A 2006 Europhys. Lett. 73 15
[16] Bulgac A and Wirzba A 2001 Phys. Rev. Lett. 87 120404
[17] Wirzba A, Bulgac A and Magierski P 2006 J. Phys. A: Math. Gen. 39 6815
[18] Recati A, Fuchs J N, Pecca C S and Zwerger W 2005 Phys. Rev. A 72 023616
[19] Bulgac A and Magierski P 2001 Nucl. Phys. A 683 695
[20] Neergaard G and Madsen J 2000 Phys. Rev. D 62 034005
[21] Pathria R K 1972 Statistical Mechanics (2nd edn.) (Oxford: Pergamon Press) p. 198
[1] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[2] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[3] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[4] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[5] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[6] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[7] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[8] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[9] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[10] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[11] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[12] Pattern transition and regulation in a subthalamopallidal network under electromagnetic effect
Zilu Cao(曹子露), Lin Du(都琳), Honghui Zhang(张红慧), Yuzhi Zhao(赵玉枝), Zhuan Shen(申转), and Zichen Deng(邓子辰). Chin. Phys. B, 2022, 31(11): 118701.
[13] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[14] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[15] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
No Suggested Reading articles found!