Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 010308    DOI: 10.1088/1674-1056/21/1/010308
GENERAL Prev   Next  

High-fidelity quantum memory realized via Wigner crystals of polar molecules

Xue Peng(薛鹏) and Wu Jian-Zhi(午剑智)
Department of Physics, Southeast University, Nanjing 211189, China
Abstract  The collective excitations of spin states of an ensemble of polar molecules are studied as a candidate for high-fidelity quantum memory. To avoid the collisional properties of the molecules, they are arranged in dipolar crystals under one or two dimensional trapping conditions. We calculate the lifetime of the quantum memory by identifying the dominant decoherence mechanisms and estimating their effects on gate operations when a molecular ensemble qubit is transferred to a microwave cavity.
Keywords:  polar molecules      quantum memory      molecular dipolar crystals  
Received:  13 August 2011      Revised:  05 September 2011      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  33.80.-b (Photon interactions with molecules)  
  85.25.Cp (Josephson devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004029 and 11174052), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010422), the Ph. D. Program Foundation of Ministry of Education of China, the

Cite this article: 

Xue Peng(薛鹏) and Wu Jian-Zhi(午剑智) High-fidelity quantum memory realized via Wigner crystals of polar molecules 2012 Chin. Phys. B 21 010308

[1] Xue P, Huang Y F, Zhang Y S, Li C F and Guo G C 2001 Phys. Rev. A 64 032304
[2] Xue P, Li C F, Zhang Y S and Cuo G C 2001 J. Opt. B: Quantum Semiclass. Opt. 3 219
[3] Xue P and Guo G C 2003 Phys. Rev. A 67 034302
[4] Xue P, Han C, Yu B, Lin X M and Guo G C 2004 Phys. Rev. A 69 052318
[5] Livadaru L, Xue P, Shaterzadeh-Yazdi Z, DiLabio G A, Mutus J, Pitters J L, Sanders B C and Wolkow R A 2010 New J. Phys. 12 083018
[6] Xue P and Sanders B C 2010 Phys. Rev. B 82 085326
[7] Xue P 2011 Chin. Phys. Lett. 28 070305
[8] Xue P 2011 Chin. Phys. B 20 100310
[9] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[10] Wallra A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[11] Doyle J, Friedrich B, Krems R V and Masnou-Seeuws F 2004 Eur. Phys. J. D 31 149
[12] Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J and Zoller P 2006 Nat. Phys. 2 636
[13] Micheli A, Brennen G K and Zoller P 2006 Nat. Phys. 2 341
[14] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J and Zoller P 2006 Phys. Rev. Lett. 97 033003
[15] Büchler H P, Demler E, Lukin M, Micheli A, ProkofÉv N, Pupillo G and Zoller P 2007 Phys. Rev. Lett. 98 060404
[16] Rabl P and Zoller P 2007 Phys. Rev. A 76 042308
[17] Dubin D H E and O'Neil T M 1999 Rev. Mod. Phys. 71 87
[18] Morigi G and Fishman S 2004 Phys. Rev. E 70 066141
[1] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[2] Scattering of a single photon in a one-dimensional coupled resonator waveguide with a Λ-type emitter assisted by an additional cavity
Ming-Xia Li(厉鸣夏), Jie Yang(杨洁), Gong-Wei Lin(林功伟), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2018, 27(5): 054206.
[3] Quantum light storage in rare-earth-ion-doped solids
Yi-Lin Hua(华怡林), Zong-Quan Zhou(周宗权), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2018, 27(2): 020303.
[4] A high-fidelity memory scheme for quantum data buses
Bo-Yang Liu(刘博阳), Wei Cui(崔巍), Hong-Yi Dai(戴宏毅), Xi Chen(陈希), Ming Zhang(张明). Chin. Phys. B, 2017, 26(9): 090303.
[5] Theoretical derivation and simulation of a versatileelectrostatic trap for cold polar molecules
Shengqiang Li(李胜强). Chin. Phys. B, 2016, 25(11): 113702.
[6] Diverse solid and supersolid phases of bosons in a triangular lattice
Chen Qi-Hui (陈起辉), Li Peng (李鹏). Chin. Phys. B, 2014, 23(5): 056701.
[7] Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap
Li Sheng-Qiang (李胜强), Xu Liang (许亮), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(12): 123701.
[8] Electrostatic surface trap for cold polar molecules on a chip
Wang Qin (王琴), Li Sheng-Qiang (李胜强), Hou Shun-Yong (侯顺永), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(1): 013701.
[9] Particle-hole bound states of dipolar molecules in an optical lattice
Zhang Yi-Cai (张义财), Wang Han-Ting (汪汉廷), Shen Shun-Qing (沈顺清), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2013, 22(9): 090501.
[10] Electrostatic surface guiding of cold polar molecules with a single charged wire
Deng Lian-Zhong(邓联忠), Xia Yong(夏勇), and Yin Jian-Ping(印建平). Chin. Phys. B, 2007, 16(3): 707-717.
[11] Novel electrostatic trap for cold polar molecules
Xu Xue-Yan (许雪艳), Ma Hui (马慧), and Yin Jian-Ping (印建平). Chin. Phys. B, 2007, 16(12): 3647-3654.
No Suggested Reading articles found!