Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 096101    DOI: 10.1088/1674-1056/20/9/096101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal properties of single-walled carbon nanotube crystal

Hu Li-Jun(胡丽君)a)b), Liu Ji(刘基)a), Liu Zheng(刘政)a), Qiu Cai-Yu(邱彩玉)a)b), Zhou Hai-Qing(周海青)a)b), and Sun Lian-Feng(孙连峰)a)†
a National Center for Nanoscience and Technology, Beijing 100190, China; b Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  In this work, the thermal properties of a single-walled carbon nanotube (SWCNT) crystal are studied. The thermal conductivity of the SWCNT crystal is found to have a linear dependence on temperature in the temperature range from 1.9 K to 100.0 K. In addition, a peak (658 W/mK) is found at a temperature of about 100.0 K. The thermal conductivity decreases gradually to a value of 480 W/mK and keeps almost a constant in the temperature range from 100.0 K to 300.0 K. Meanwhile, the specific heat shows an obvious linear relationship with temperature in the temperature range from 1.9 K to 300.0 K. We discuss the possible mechanisms for these unique thermal properties of the single-walled carbon nanotube crystal.
Keywords:  single-walled carbon nanotube      SWCNT crystal      thermal conductivity      specific heat  
Received:  10 November 2010      Revised:  20 January 2011      Accepted manuscript online: 
PACS:  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  78.67.De (Quantum wells)  
  81.05.U- (Carbon/carbon-based materials)  

Cite this article: 

Hu Li-Jun(胡丽君), Liu Ji(刘基), Liu Zheng(刘政), Qiu Cai-Yu(邱彩玉), Zhou Hai-Qing(周海青), and Sun Lian-Feng(孙连峰) Thermal properties of single-walled carbon nanotube crystal 2011 Chin. Phys. B 20 096101

[1] Iijima S and Ichihashi T 1993 Nature 363 603
[2] Tans S J, Devoret M H, Dai H J, Thess A, Smalley R E, Georliga L J and Dekker C 1997 Nature 386 474
[3] Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A and Smalley R E 1997 Science 275 1922
[4] Rosen R, Simendinger W, Debbault C, Shimoda H, Fleming L, Stoner B and Zhou O 2000 Appl. Phys. Lett. 76 1668
[5] Liu J, Zheng K H, Liu Z, Hu L J and Sun L F 2010 Chin. Phys. B 19 066101
[6] Wei L H, Kuo P K, Thomas R L, Anthony T R and Banholzer W F 1993 Phys. Rev. Lett. 70 3764
[7] Berber S, Kwon Y K and Thmanek D 2000 Phys. Rev. Lett. 84 4613
[8] Tritt M T 2004 Thermal Conductivity: Theory, Properties, and Applications (New York: Kluwer Academic/Plenum Publishers) p. 258
[9] Dai H J, Llaguno M C, Nemes N M, Johnson A T, Fischer J E, Walters D A, Casavant M J, Schmidt J and Smally R E 2000 Appl. Phys. Lett. 77 666
[10] Liu G T, Zhao Y C, Deng K, Liu Z, Chu W G, Chen J R, Yang Y L, Zheng K H, Huang H B, Ma W J, Song L,Yang H F, Gu C Z, Rao G H, Wang C, Xie S S and Sun L F 2008 Nano Lett. 8 4
[11] Ma W J, Song L,Yang R, Zhang T H, Zhao Y C, Sun L F, Ren Y, Liu D F, Liu L F, Shen J, Zhang Z X, Xiang Y J, Zhou W Y and Xie S S 2007 Nano Lett. 7 2307
[12] Dai H J, Whitney, Piskoti M C and Zettl A 1999 Phys. Rev. B 59 2514
[13] Yu J, Kalia R K and Vashishta P 1995 J. Chem. Phys. 103 6697
[14] Tersoff J and Ruoff R S 1994 Phys. Rev. Lett. 73 676
[15] Delaney P, Choi H J, Ihm J, Louie S G and Cohen M L 1999 Phys. Rev. B 60 7899
[16] Sinha S, Barjami S, Iannacchione G, Schwab A and Muench G 2005 J. Nanopart. Res. 7 651
[17] Wang Z L, Liang J G, Tang D W and Zhu Y T 2008 Acta Phys. Sin. 57 3391 (in Chinese)
[18] Hou Q W, Cao B Y and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese)
[19] Mizel A, Benedict L X, Cohen M L, Louie S G, Zettl A, Budraa N K and Beyermann W P 1999 Phys. Rev. B 60 3264
[20] Bao W X and Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese)
[21] Desorbo W and Tyler W W 1953 J. Chem. Phys. 21 1660
[22] Yi W, Lu L, Zhang D L, Pan Z W and Xie S S 1999 Phys. Rev. B 59 9015
[23] Benedict L X, Louie S G and Cohen M L 1996 Solid State Comm. 100 177
[24] Zhou Z P, Ci L J, Song L, Yan X Q, Liu D F, Yuan H J, Gao Y, Wang J X, Liu L F, Zhou W Y, Wang G and Xie S S 2004 J. Phys. Chem. B 10810751
[25] Dai H J, Batlogg B, Benes Z, Johnson A T and Fischer J E 2000 Science 289 1730
[26] Kane C L and Mele E J 1997 Phys. Rev. Lett. 78 1932
[27] Jishi R A, Venkataraman L, Dresselhaus M S and Dresselhaus G 1993 Chem. Phys. Lett. 209 77
[28] Wang W, Zhang K W, Meng L J, Li Z Q, Zuo X Y and Zhong J X 2010 Acta Phys. Sin. 59 2672 (in Chinese)
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[6] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[7] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[8] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[11] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[12] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[13] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[14] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[15] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
No Suggested Reading articles found!