Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 090509    DOI: 10.1088/1674-1056/20/9/090509
GENERAL Prev   Next  

Modified scaling function projective synchronization of chaotic systems

Xu Yu-Hua(徐玉华)a)b), Zhou Wu-Neng(周武能)c), and Fang Jian-An(方建安)c)
a Department of Mathematics and Finance, Yunyang Teachers' College, Shiyan 442000, China; b Computer School of Wuhan University, Wuhan 430079, Chinab College of Information Science and Technology, Donghua University, Shanghai 201620, China
Abstract  This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium point, a periodic orbit, or even a chaotic attractor in the phase space. Based on LaSalle's invariance set principle, the adaptive control law is derived to make the states of two chaotic systems function projective synchronized. Some numerical examples are also given to show the effectiveness of the proposed method.
Keywords:  chaotic system      function projective synchronization      scaling function  
Received:  25 January 2011      Revised:  06 April 2011      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  

Cite this article: 

Xu Yu-Hua(徐玉华), Zhou Wu-Neng(周武能), and Fang Jian-An(方建安) Modified scaling function projective synchronization of chaotic systems 2011 Chin. Phys. B 20 090509

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Zhang H B, Yu Y B and Zhang J 2010 Chin. Phys. B bf19 080509-1
[3] Cao J, Wang Z and Sun Y 2007 Physica A 385 718
[4] Cao J and Li L 2009 Neural Networks 22 335
[5] He W and Cao J 2009 Chaos 19 013118
[6] Lu J, Cao J and Daniel W C 2008 IEEE Trans. Circuits Syst. I 55 1347
[7] Li W L and Song Y Z 2008 Phys. Rev. Lett. 57 51
[8] Hu J B, Han Y and Zhao L D 2009 Acta Phys. Sin. 58 1441 (in Chinese)
[9] Zhang R X, Yang Y and Yang S P 2009 Acta Phys. Sin. 58 6039 (in Chinese)
[10] Kuntanapreeda S 2009 Phys. Lett. A 373 2837
[11] Zou Y L and Zhu J 2006 Acta Phys. Sin. 55 1965 (in Chinese)
[12] Wu D and Li J 2010 Chin. Phys. B 19 120505
[13] Zhang R and Xu Z 2010 Chin. Phys. B 19 120511
[14] Lü L, Cai Y and Luan L 2010 Chin. Phys. B 19 080506
[15] Zhang R X and Yang S P 2008 Acta Phys. Sin. 57 4073 (in Chinese)
[16] Zhou P and Cao Y X 2010 Chin. Phys. B 19 100507
[17] Lü J H and Chen G R 2002 Int. J. Bifurcat. Chaos 12 659
[18] Ito K 1980 Earth Planet. Sci. Lett. 51 451
[19] Chen G R and Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[11] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[12] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[13] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[14] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[15] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
No Suggested Reading articles found!