Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 090303    DOI: 10.1088/1674-1056/20/9/090303
GENERAL Prev   Next  

The effect of atomic spontaneous decay on the dynamics of the negativity of the Wigner function of radiation

Abdel-Baset A. Mohamed
Faculty of Science, Assiut University, Assiut, Egypt
Abstract  The exact solution of the master equation for the case of a high-Q cavity with atomic decay is found. We use the negativity of the Wigner function (WF) as an indicator of nonclassicality. It is found that the negative values of the field WF are very sensitive to any change in the damping parameter. The atomic spontaneous decay leads to the simultaneous disappearance of both entanglement and nonclassicality of quantum states. Moreover, the purity of the field states is completely lost.
Keywords:  non-classicality      entanglement      atomic decay  
Received:  04 March 2011      Revised:  14 April 2011      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  

Cite this article: 

Abdel-Baset A. Mohamed The effect of atomic spontaneous decay on the dynamics of the negativity of the Wigner function of radiation 2011 Chin. Phys. B 20 090303

[1] Royer A 1989 Found. Phys. 19 3
[2] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299 bibitem2+1 Lutterbach L G and Davidovich L 1997 Phys. Rev. Lett. bf 78 2547
[3] Kim M S, Antesberger G, Bodendorf C T and Walther H 1998 Phys. Rev. A 58 R65
[4] Leibfried D, Meekhof D M, King B E, Monroe C, Itano W M and Wineland D J 1996 Phys. Rev. Lett. 77 4281
[5] Nogues G, Rauschenbeutel A, Osnaghi S, Bertet P, Brune M, Raimond J M, Haroche S, Lutterbach L G and Davidovich L 2000 Phys. Rev. A 62 054101
[6] Buzek V and Knight P L 1995 Prog. Opt. bf34 1
[7] Zurek W H 1981 Phys. Rev. D 24 1516
[8] Zeh H D 1970 Found. Phys. 1 69
[9] Zayed E M E, Daoud A S, AL-Laithy M A and Naseem E N 2005 Chaos Soliton. Fract. 24 967
[10] Dragoman D 2005 EURASIP J. Appl. Sig. P. 10 1520
[11] Turchette Q A, Georgiades N Ph, Hood C J and Kimble H J 1998 Phys. Rev. bf58 4056
[12] Lvovsky A I and Mlynek J 2002 Phys. Rev. Lett. 88 250401
[13] Zavatta A, Viciani S and Bellini M 2004 Science bf 306 660
[14] Arecchi F T 1965 Phys. Rev. Lett. 15 912
[15] Scully M O and Lamb Jr W E 1967 Phys. Rev. 159 208
[16] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) pp. 736—738
[17] Dalton B J 1986 Phys. Scr. T12 43
[18] Yuen H P 1976 Phys. Rev. A 13 2226
[19] Giacobino E and Febre C 1992 Appl. Phys. B: Photophys. Laser. Chem. 55 189
[20] Schleich W and Wheeler J A 1987 Nature 326 574
[21] Lütkenhaus N and Barnett S M 1995 Phys. Rev. A 51 3340
[22] Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J and Schiller S 2001 Phys. Rev. Lett. bf87 050402
[23] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (NewYork: Springer)
[24] Braunstein S L, D'Ariano G M, Milburn G J and Sacchi M F 2000 Phys. Rev. Lett. bf84 3486
[25] Tittel W, Brendel J, Zbinden H and Gisin N 1998 Phys. Rev. Lett. bf81 3563
[26] Chuang I L and Nielsen M A 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[27] Lütke'nhaus N and Barnett S M 1995 Phys. Rev. A bf51 3340
[28] Kenfack A and .Zyczkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
[29] Wheeler J A and Zurek W H 1984 Quantum Theory and Measurement (Princeton: Princeton University Press)
[30] Bell J S 1964 it Physics 1 195
[31] Blais A, Huang R S, Wallraff A, Girvin S and Schoelkopf R 2004 Phys. Rev. A bf69 062320%Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature
[32] Diedrich F, Bergquist J C, Itano W M and Wineland D J 1989 Phys. Rev. Lett. 62 403
[33] Marzoli I, Cirac J I, Blatt R and Zoller P 1994 Phys. Rev. A bf49 2771
[34] Quang T, Knight P L and Buzek V 1991 Phys. Rev. A bf44 6092
[35] Puri R R and Agarwal G S 1986 Phys. Rev. A bf33 3610
[36] Hessian H A and Mohamed A B A 2008 Chin. Phys. Lett. bf25 2492
[37] Hessian H A 2008 Int. J. Mod. Phys. B bf22 4017
[38] Liu Y X, Wei L F and Nori F 2005 Phys. Rev. A 72 033818
[39] Moya-Cessa H and Knight P L 1993 Phys. Rev. A bf48 2479
[40] Hessian H A and Mohamed A B A 2008 Laser Physics bf18 1217
[41] Bertet P, Auffeves A, Maioli P, Osnaghi S, Meunier T, Brune M, Raimond J M and Haroche S 2002 Phys. Rev. Lett. bf89 200402
[42] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!