Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087302    DOI: 10.1088/1674-1056/20/8/087302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tuning of plasmonic behaviours in coupled metallic nanotube arrays

Fu Shao-Li(付少丽)a), Li Hong-Jian(李宏建) a)b), Xie Su-Xia(谢素霞)b), Zhou Xin(周昕)b), Xu Hai-Qing(徐海清)a), and Xia Hui(夏辉)a)†
a College of Physics Science and Technology, Central South University, Changsha 410083, China; b College of Materials Science and Engineering, Central South University, Changsha 410083, China
Abstract  We theoretically investigate the influence of the shape of nanoholes on plasmonic behaviours in coupled elliptical metallic nanotube arrays by the finite-difference time-domain (FDTD) method. We study the structure in two cases: one for the array aligned along the minor axis and the other for the array aligned along the major axis. It is found that the optical properties and plasmonic effects can be tuned by the effective surface charges as a result of the variation in the minor axis length. Based on the localized nature of electric field distributions, we also clearly show that the presence of localized plasmon resonant modes originates from multipolar plasmon polaritons and a large magnitude of opposing surface charges build up in the gap between adjacent nanotubes.
Keywords:  elliptical metallic nanotube array      surface plasmons      transmission spectrum      field distributions  
Received:  19 May 2010      Revised:  03 March 2011      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.68.+m (Optical properties of surfaces)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100162110068), the Graduate Education Innovation Project of Central South University (Grant No. 2010ssxt010), and the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2009B029).

Cite this article: 

Fu Shao-Li(付少丽), Li Hong-Jian(李宏建), Xie Su-Xia(谢素霞), Zhou Xin(周昕), Xu Hai-Qing(徐海清), and Xia Hui(夏辉) Tuning of plasmonic behaviours in coupled metallic nanotube arrays 2011 Chin. Phys. B 20 087302

[1] Lieber C M 1998 Solid State Commun. 107 607
[2] Jain P K and El-Sayed M A 2008 Nano Lett. 8 4347
[3] Banholzer M J, Millstone J E, Qin L and Mirkin C A 2008 Chem. Soc. Rev. 37 885
[4] Hagglund C, Zach M, Petersson G and Kasemo B 2008 Appl. Phys. Lett. 92 053110
[5] Wang J F, Li H J, Zhou Z Y, Li X Y, Liu J and Yang H Y 2010 Chin. Phys. B 19 117310
[6] Murray C B, Sun S, Doyle H and Betley T 2001 Mater. Res. Soc. Bull. 26 985
[7] Li H H, Chen J and Wang Q K 2010 Chin. Phys. B 19 114203
[8] Maier S A 2007 Plasmonics: Fundamentals and Applications (Dordrecht: Springer)
[9] Brongersma M L and Kik P G 2007 Surface Plasmon Nanophotonics (Dordrecht: Springer)
[10] Shalaev V M and Kawata S 2007 Nanophotonics with Surface Plasmons (Oxford: Elsevier)
[11] Khlebtsov B N and Khlebtsov N G 2007 J. Phys. Chem. C 111 11516
[12] Imura K, Nagahara T and Okamoto H 2005 J. Chem. Phys. 122 154701
[13] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H and Zhao Y 2010 Chin. Phys. B 19 047304
[14] Guo Y N, Xue W R and Zhang W M 2009 Acta Phys. Sin. 58 4168 (in Chinese)
[15] Prescott S W and Mulvaney P 2006 J. Appl. Phys. 99 123504
[16] Liu M, Guyot-Sionnest P, Lee T W and Gray S K 2007 Phys. Rev. B 76 235428
[17] Nehl C L and Hafner J H 2008 J. Mater. Chem. 18 2415
[18] Prodan E, Nordlander P and Halas N J 2003 Nano Lett. 3 1411
[19] Teperik T V, Popov V V and G de Abajo F J 2004 Phys. Rev. B 69 155402
[20] Oubre C and Nordlander P 2004 J. Phys. Chem. B 108 11740
[21] Zhang H X, Gu Y and Gong Q H 2008 Chin. Phys. B 17 2567
[22] Chau Y F, Yeh H H, Liu C Y and Tsai D P 2010 Opt. Commun. 283 3189
[23] Chau Y F, Yeh H H and Tsai D P 2009 Phys. Plasmas 16 022303
[24] Taflove A and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. (Boston: Artech House)
[25] Palik E D 1985 Handbook of Optical Constants in Solids (Boston: Academic)
[26] Brandl D W and Nordlander P 2007 J. Chem. Phys. 126 144708
[27] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 167
[1] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[4] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[5] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[6] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[7] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[8] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[9] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[10] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[11] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
[12] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[13] Excitation of anti-symmetric coupled spoof SPPs in 3D SIS waveguides based on coupling
Li-li Tian(田莉莉), Yang Chen(陈杨), Jian-long Liu(刘建龙), Kai Guo(郭凯), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2016, 25(7): 078401.
[14] Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁). Chin. Phys. B, 2016, 25(7): 077301.
[15] Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions
Ting Wang(王婷), Hui Wang(王辉), Mei-Ping Sheng(盛美萍), Qing-Hua Qin(秦庆华). Chin. Phys. B, 2016, 25(4): 046301.
No Suggested Reading articles found!