Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080506    DOI: 10.1088/1674-1056/20/8/080506
GENERAL Prev   Next  

A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control

Wang Jun-Wei(王军威), Ma Qing-Hua(马庆华), and Zeng Li(曾丽)
Cisco School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006, China
Abstract  Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.
Keywords:  mix-synchronization      Chua's circuit      non-fragile control      Lyapunov stability      linear matrix inequality  
Received:  08 February 2011      Revised:  23 April 2011      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province of China (Grant No. LYM10074) and the Natural Science Foundation of Guangdong Province, China (Grant No. 9451042001004076).

Cite this article: 

Wang Jun-Wei(王军威), Ma Qing-Hua(马庆华), and Zeng Li(曾丽) A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control 2011 Chin. Phys. B 20 080506

[1] Chua L O, Komuro M and Matsumoto T 1986 IEEE Trans. Circuits Syst. CAS-33 1073
[2] Matsumoto T 1984 IEEE Trans. Circuits Syst. CAS-31 1055
[3] Zhong G Q and Ayrom F 1985 Int. J. Circuit Theor. Appl. 13 93
[4] Matsumoto T, Chua L O and Komuro M 1985 IEEE Trans. Circuits Syst. CAS-32 797
[5] Shil'nikov L P 1994 Int. J. Bifur. Chaos 4 489
[6] Chua L O, Itoh M, Kocarev L and Eckert K 1993 J. Circuits Syst. Comput. 3 93
[7] Zhang H B, Xia J W, Yu Y B and Dang C Y 2010 Chin. Phys. B 19 030505
[8] Fu S H and Pei L J 2010 Acta Phys. Sin. 59 5985 (in Chinese)
[9] Kocarev L M and Janji'c P A 1995 IEEE Trans. Circuits Syst. I: Fund. Theor. Appl. 42 779
[10] Miller D A, Kowalski K L and Lozowski A 1999 Proc. IEEE ISCAS '99 5 458
[11] Li C D and Liao X F 2006 Int. J. Bifur. Chaos 16 1041
[12] Liao X X, Chen G, Xu B J and Shen Y 2005 Int. J. Bifur. Chaos 15 2227
[13] Zhang J, Xu H B and Wang H J 2006 Chin. Phys. 15 953
[14] Li J F, Li N, Cai L and Zhang B 2008 Acta Phys. Sin. 57 7500 (in Chinese)
[15] Feng Y F and Zhang Q L 2010 Chin. Phys. B 19 120504
[16] Wang S H, Liu W Q, Ma B J, Xiao J H and Jiang D Y 2005 Chin. Phys. 14 55
[17] Xu S Y, Yang Y, Liu X, Tang Y and Sun H D 2011 Chin. Phys. B 20 020509
[18] Hung Y C, Yan J J and Liao T L 2008 Math. Comput. Simul. 77 374
[19] Meng J and Wang X Y 2009 Acta Phys. Sin. 58 819 (in Chinese)
[20] Buscarino A, Fortuna L, Frasca M and Sciuto G 2009 Int. J. Bifur. Chaos 19 3101
[21] Porfiri M and Fiorilli F 2010 Physica D 239 454
[22] Grosu I, Banerjee R, Roy P K and Dana S K 2009 Phys. Rev. E 80 016212
[23] Jadbabaie A, Abdallah C T, Famularo D and Dorato P 1998 Proc. American Control Conference June 21—26, 1998, Philadelphia, USA, pp. 2842—2846
[24] Keel L H and Bhattacharyya S P 1997 IEEE Trans. Automat. Control 42 1098
[25] Haddad W M and Corrado J 1997 Proc. 35th IEEE Conf. Decis. Control December 10—12, 1997, San Diego, USA, pp. 2678—2683
[26] Dorato P 1998 Proc. American Control Conference June 21—26, 1998, Philadelphia, USA, pp. 2829—2831
[27] Yang G H and Wang J L 2001 Automatica 37 727
[28] Park J H 2004 Appl. Math. Comput. 149 147
[29] Zhang B Y, Zhou S S and Li T 2007 Informat. Sci. 177 5118
[30] Yang G H and Che W W 2008 Automatica 44 2849
[31] Wo S L, Zou Y, Chen Q W and Xu S Y 2009 J. Franklin Inst. 346 914
[32] Boyd S, EI Ghaoui L, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[33] Zhong G Q 1994 IEEE Trans. Circuits Syst. I: Fund. Theor. Appl. 41 934
[34] Huang A, Pivka L, Wu C W and Franz M 1996 Int. J. Bifur. Chaos 6 2175
[35] Tang K S, Man K F, Zhong G Q and Chen G 2003 Contr. Theor. Appl. 20 223
[36] Stegemann C, Albuquerque H A and Rech P C 2010 Chaos 20 023103
[37] Thamilmaran K, Lakshmanan M and Venkatesan A 2004 Int. J. Bifur. Chaos 14 221
[38] Liu X, Wang J Z and Huang L 2007 Int. J. Bifur. Chaos 17 2705
[39] Chua L O and Lin G N 1990 IEEE Trans. Circuits Syst. CAS-37 885
[40] Chua L O, Wu C W, Huang A and Zhong G Q 1993 IEEE Trans. Circuits Syst. I: Fund. Theor. Appl. CAS-40 732
[41] Wang X F and Chen G 2003 IEEE Circuits Syst. Mag. 3 6
[1] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[2] Double compound combination synchronization among eight n-dimensional chaotic systems
Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly. Chin. Phys. B, 2018, 27(8): 080502.
[3] Intra-layer synchronization in duplex networks
Jie Shen(沈洁), Longkun Tang(汤龙坤). Chin. Phys. B, 2018, 27(10): 100503.
[4] Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor—actuator networks
Jian-Zhong Zhang(张建中), Bao-Tong Cui(崔宝同), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(9): 090201.
[5] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[6] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[7] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[8] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[9] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[10] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[11] Stability analysis and control synthesis of uncertain Roesser-type discrete-time two-dimensional systems
Wang Jia (王佳), Hui Guo-Tao (会国涛), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2013, 22(3): 030206.
[12] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[13] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali . Chin. Phys. B, 2012, 21(7): 070207.
[14] Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions
Dai Hao (戴浩), Jia Li-Xin (贾立新), Zhang Yan-Bin (张彦斌). Chin. Phys. B, 2012, 21(12): 120508.
[15] Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay
Wang Shen-Quan (王申全), Feng Jian (冯健), Zhao Qing (赵青). Chin. Phys. B, 2012, 21(12): 120701.
No Suggested Reading articles found!