Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080307    DOI: 10.1088/1674-1056/20/8/080307
GENERAL Prev   Next  

Quantum nondemolition measurements of a flux qubit coupled to a noisy detector

Jiang Wei(姜伟)a), Yu Yang(于扬) a)b)†, and Wei Lian-Fu(韦联福)b)‡
a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; b Laboratory of Quantum Opt-electronics, Southwest Jiaotong University, Chengdu 610031, China
Abstract  We theoretically study the quantum nondemolition measurements of a flux qubit coupled to a noisy superconducting quantum interference device (SQUID). The obtained analytical results indicate that the measurement probability is frequency-dependent in a short time scale and has a close relationship with the measurement-induced dephasing. Furthermore, when the detuning between the driven and bare resonator equals the coupling strength, we can obtain the maximum measurement rate that is determined by the character of the noise in the SQUID. Finally, we analysed the mixed effect caused by coupling between the non-diagonal term and the external variable. It is found that the initial information of the qubit is destroyed due to quantum tunneling between the qubit states.
Keywords:  Josephson device      quantum nondemolition measurements      quantum noise  
Received:  27 February 2011      Revised:  31 March 2011      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  85.25.Cp (Josephson devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10725415) and the State Key Program for Basic Research of China (Grant No. 2006CB921801).

Cite this article: 

Jiang Wei(姜伟), Yu Yang(于扬), and Wei Lian-Fu(韦联福) Quantum nondemolition measurements of a flux qubit coupled to a noisy detector 2011 Chin. Phys. B 20 080307

[1] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag)
[2] Caves C M, Thorne K S, Drever R W P, Sandberg V D and Zimmermann M 1980 Rev. Mod. Phys. 52 341
[3] Milburn G J and Walls D F 1980 Phys. Rev. A 28 2065
[4] Imoto N, Haus H A and Yamamoto Y 1985 Phys. Rev. A 32 2287
[5] Bachor H A, Levenson M D, Walls D F, Perlmutter S H and Shelby R M 1988 Phys. Rev. A 38 180
[6] Larson J and Abdel-Aty M 2009 Phys. Rev. A 80 053609
[7] Brune M, Haroche S and Raimond J M 1988 Phys. Rev. A 45 5139
[8] Boissonneault M, Gambetta J M and Blais A 2009 Phys. Rev. A 79 013819
[9] Shi Z G, Chen X W, Zhu X X and Song K H 2009 Chin. Phys. B 18 910
[10] Lupascu A, Saito S, Picot T, De Groot P C, Harmans C J P M and Mooij J E 2007 Nat. Phys. 3 119
[11] Bocko M F and Onofrio R 1996 Rev. Mod. Phys. 68 755
[12] Makhlin Y, Schon G and Shnirman A 2000 Phys. Rev. Lett. 85 4578
[13] Ji Y H, Lai H F, Cai S H and Wang Z S 2010 Chin. Phys. B 19 030310
[14] Clerk A A, Girvin S M and Stone A D 2003 Phys. Rev. B 67 165324
[15] Averin D V arXiv: cond-mat/0004364v1
[16] Viola L, Onofrio R and Calarco T 1997 Phys. Rev. A 229 23
[17] Chirolli L and Burkard G 2009 Phys. Rev. B 80 184509
[18] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155
[19] Ashhab S, You J Q and Nori F 2009 New J. Phys. 11 083017
[20] Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2006 Phys. Rev. A 74 042318
[21] Gambetta J, Blais A, Boissonneault M, Houck A A, Schuster D I and Girvin S M 2008 Phys. Rev. A 77 012112
[22] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[23] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
[24] Wang Y D, Li Y, Xue F, Bruder C and Semba K 2009 Phys. Rev. B 80 144508
[25] Rocheleau T, Ndukum T, Macklin C, Hertzberg J B, Clerk A A and Schwab K C 2010 Nature 463 72
[26] Gigan S, Bohm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67
[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] The difference in noise property between the Autler–Townes splitting medium and the electromagnetically induced transparent medium
Li Zhong-Hua(李中华), Li Yuan(李媛), Dou Ya-Fang(豆亚芳), and Zhang Jun-Xiang(张俊香) . Chin. Phys. B, 2012, 21(3): 034204.
[3] Macroscopic resonant tunneling in an rf-SQUID flux qubit
Cong Shan-Hua (丛山桦), Wang Yi-Wen (王轶文), Sun Guo-Zhu (孙国柱), Chen Jian (陈健), Yu Yang (于扬), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2011, 20(5): 050316.
[4] Entanglement dynamics of two-qubit systems in different quantum noises
Pan Chang-Ning(潘长宁), Li-Fei(李飞), Fang Jian-Shu(方见树), and Fang Mao-Fa(方卯发). Chin. Phys. B, 2011, 20(2): 020304.
[5] The effect of quantum noise on multiplayer quantum game
Cao Shuai(曹帅), Fang Mao-Fa(方卯发), and Zheng Xiao-Juan(郑小娟). Chin. Phys. B, 2007, 16(4): 915-918.
[6] Stochastic resonance in a gain--noise model of a single-mode laser driven by pump noise and quantum noise with cross-correlation between real and imaginary parts under direct signal modulation
Chen Li-Mei(陈黎梅), Cao Li(曹力), and Wu Da-Jin(吴大进). Chin. Phys. B, 2007, 16(1): 123-129.
[7] A secure identification system using coherent states
He Guang-Qiang (何广强), Zeng Gui-Hua (曾贵华). Chin. Phys. B, 2006, 15(2): 371-374.
[8] The effect of quantum noise on the restricted quantum game
Cao Shuai (曹帅), Fang Mao-Fa (方卯发). Chin. Phys. B, 2006, 15(1): 60-65.
No Suggested Reading articles found!