Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080305    DOI: 10.1088/1674-1056/20/8/080305
GENERAL Prev   Next  

Quantum logic networks for cloning a quantum state near a given state

Zhou Yan-Hui(周彦辉)
Department of Basic Courses, Zhengzhou College of Science & Technology, Zhengzhou 450064, China
Abstract  Two quantum logic networks are proposed to simulate a cloning machine that copies the states near a given one. Probabilistic cloning based on the first network is realized and the cloning probability of success based on the second network is 100%. Therefore, the second network is more motivative than the first one.
Keywords:  given state      network      quantum cloning  
Received:  28 November 2010      Revised:  11 January 2011      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  

Cite this article: 

Zhou Yan-Hui(周彦辉) Quantum logic networks for cloning a quantum state near a given state 2011 Chin. Phys. B 20 080305

[1] Wootters W K and Zurek W H 1982 Nature 299 802
[2] Duan L M and Guo G C 1998 Phys. Rev. Lett. 80 4999
[3] Ricci M, Sciarrino F, Cerf N J, Filip R, Fiuracuteabrevesek J and Martini F D 2005 Phys. Rev. Lett. 95 090504
[4] Scarani V, Iblisbir S and Gisin N 2005 Rev. Mod. Phys. 77 1225
[5] Buvzek V and Hillery M 1996 Phys. Rev. A 54 1844
[6] Bruss D, Cinchetti M, D'Ariano G M and Macchiavello C 2000 Phys. Rev. A 62 012302
[7] Zhan Y B 2008 Chin. Phys. B 17 411
[8] Yang R C, Li H C, Li X, Huang Z P and Xie H 2008 Chin. Phys. B bf 17 967
[9] Dai J L and Zhang W H 2009 Chin. Phys. B bf 18 426
[10] Zheng S B 2003 Chin. Phys. Lett. 20 325
[11] Zhang D W, Shang X Q and Zhu A D 2008 Chin. Phys. Lett. 25 1954
[12] Navez P and Cerf N J 2003 Phys. Rev. A 68 032313
[13] Zou X B, Dong Y L and Guo G C 2006 Phys. Rev. A 74 032325
[14] Xiao Y F, Zou X B and Guo G C 2007 Phys. Rev. A 75 054303
[15] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[16] Zheng X J, Fang M F, Liao X P and Cai J W 2007 J. Phys. B 40 507
[17] Buvzek V, Braunstein S L, Hillery M and Bruss D 1997 Phys. Rev. A 56 3446
[18] Huang Y F, Li W L, Li C F, Zhang Y S, Yiang Y K and Guo G C 2001 Phys. Rev. A 64 012315
[19] Shao X Q, Zhu A D, Zhang S, Chung J S and Yeon K H 2007 Phys. Rev. A 75 034307
[20] Chen M L and Wang S J 2006 Acta Phys. Sin. 55 529 (in Chinese)
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[7] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[8] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[9] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[10] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[11] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[12] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[13] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[14] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[15] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
No Suggested Reading articles found!