Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077103    DOI: 10.1088/1674-1056/20/7/077103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

MgO-decorated carbon nanotubes for CO2 adsorption: first principles calculations

Zhu Feng(朱峰), Dong Shan(董珊), and Cheng Gang(承刚)
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The global greenhouse effect makes it urgent to deal with the increasing greenhouse gases. In this paper the performance of MgO-decorated carbon nanotubes for CO2 adsorption is investigated through first principles calculations. The results show that the MgO-decorated carbon nanotubes can adsorb CO2 well and are relatively insensitive to O2 and N2 at the same time. The binding energy arrives at 1.18 eV for the single-MgO-decorated carbon nanotube adsorbing one CO2 molecule, while the corresponding values for O2 and N2 are 0.55 eV and 0.06 eV, respectively. In addition, multi-molecule adsorption is also proved to be very satisfactory. These results indicate that MgO-decorated carbon nanotubes have great potential applications in industrial and environmental processes.
Keywords:  carbon nanotube      CO2 adsorption      first principles calculations  
Received:  27 December 2010      Revised:  25 January 2011      Accepted manuscript online: 
PACS:  71.15.Nc (Total energy and cohesive energy calculations)  
  81.07.De (Nanotubes)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  

Cite this article: 

Zhu Feng(朱峰), Dong Shan(董珊), and Cheng Gang(承刚) MgO-decorated carbon nanotubes for CO2 adsorption: first principles calculations 2011 Chin. Phys. B 20 077103

[1] Millward A R and Yaghi O M 2005 J. Am. Chem. Soc. 127 17998
[2] Walton K S, Millward A R, Dubbeldam D, Forst H, Low J J, Yaghi Y M and Snurr R Q 2008 J. Am. Chem. Soc. 130 406
[3] Torrisi A, Bell R G and Mellot-Draznieks C 2010 Crystal Growth & Design 10 2839
[4] Bastin L, Barcia P S, Hurtado E J, Silva J A C, Rodirgues A E and Chen B 2008 J. Phys. Chem. C 112 1575
[5] Valenzano L, Civalleri B, Chavan S, Palomino G T, Arean C O and Bordiga S 2010 J. Phys. Chem. C 114 11185
[6] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49
[7] Hone J, Batlogg B, Benes Z, Johnson A T and Fischer J E 2000 Science 289 1730
[8] Hsu S C, Lu C Y, Su F S, Zeng W T and Chen W F 2010 Chem. Eng. Sci. 65 1354
[9] Huang L L, Zhang L Z, Shao Q, Lu L, Lu X, Jiang S and Shen W 2007 J. Phys. Chem. C 111 11912
[10] Du A J, Sun C H, Zhu Z H, Zhu Z H, Lu G Q, Rudolph V and Smith S C 2009 Nanotechnology 20 375701
[11] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[12] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[13] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[14] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[7] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[8] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[9] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[10] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[11] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[12] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[13] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[14] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[15] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
No Suggested Reading articles found!