Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070502    DOI: 10.1088/1674-1056/20/7/070502
GENERAL Prev   Next  

The $\mathscr{H}_{\infty}$ synchronization of nonlinear Bloch systems via dynamic feedback control approach

D.H. Jia), J.H. Koob), S.C. Won b), and Ju H. Parkc)†
a Mobile Communication Division, Digital Media and Communications, Samsung Electronics, Co. Ltd., 416-2 Maetan-Dong, Suwon 443-803, Republic of Korea; b Department of Electronic and Electrical Engineering, Pohang University of Science and Technology, San 31 Hyoja-Dong, Pohang 790-784, Republic of Korea; c Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea
Abstract  We consider an $\mathscr{H}_{\infty}$ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the $\mathscr{H}_{\infty}$ norm constraint. A numerical example is given to validate the proposed synchronization scheme.
Keywords:  $\mathscr{H}_{\infty}$ synchronization      Bloch system      dynamic control      linear matrix inequality  
Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  

Cite this article: 

D.H. Ji, J.H. Koo, S.C. Won, and Ju H. Park The $\mathscr{H}_{\infty}$ synchronization of nonlinear Bloch systems via dynamic feedback control approach 2011 Chin. Phys. B 20 070502

[1] Chen G and Dong X 1998 From Chaos to Order (Singapore: World Scientific)
[2] Mosekilde E, Mastrenko Y and Postnov D 2002 Chaotic Synchronization. Application for Living Systems (Singapore: World Scientific)
[3] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[4] Pyragas K 1992 Phys. Lett. A 170 421
[5] Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507
[6] Lu J, Yu X and Chen G 2004 Physica A 334 281
[7] Lu J and Chen G 2005 IEEE Trans. Autom. Contr. 50 841
[8] Park J H 2005 Chaos Solitons Fractals 23 1049
[9] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[10] Carroll T L and Pecora L M 1991 IEEE Trans. Circ. Syst. I 38 453
[11] Chua L O, Itah M, Kosarev L and Eckert K 1993 J. Circuit Syst. Comput. 3 93
[12] Li D, Lu J A and Wu X 2005 Chaos Solitons Fractals 23 79
[13] Park J H 2005 Chaos Solitons Fractals 23 1319
[14] Wang C and Su J 2004 Chaos Solitons Fractals 20 967
[15] Yau H 2004 Chaos Solitons Fractals 22 341
[16] Yang X and Chen G 2002 Phys. Lett. A 13 1303
[17] Park J H and Kwon O M 2005 Chaos Solitons Fractals 23 445
[18] Wu X and Lu J A 2003 Chaos Solitons Fractals 18 721
[19] Abergel D 2002 Phys. Lett. A 302 17
[20] Ucar A, Lonngren K E and Bai E W 2003 Phys. Lett. A 314 96
[21] Park J H 2006 Chaos Solitons Fractals 27 357
[22] Hou Y, Liao T and Yan J 2007 Physica A 379 81
[23] Lee S M, Ji D H, Park J H and Won S C 2008 Phys. Lett. A 372 4905
[24] Anton S 1992 The mathscrH_infty Control Problem (New York: Prentice Hall)
[25] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[1] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[2] Dynamic and inner-dressing control of four-wave mixing in periodically-driven atomic system
Yuan-Yuan Li(李院院), Li Li(李莉), Yun-Zhe Zhang(张云哲), Lei Zhang(张雷). Chin. Phys. B, 2019, 28(10): 104201.
[3] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[4] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[5] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[6] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[7] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[8] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali . Chin. Phys. B, 2012, 21(7): 070207.
[9] Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay
Wang Shen-Quan (王申全), Feng Jian (冯健), Zhao Qing (赵青). Chin. Phys. B, 2012, 21(12): 120701.
[10] Robust H control for uncertain systems with heterogeneous time-varying delays via static output feedback
Wang Jun-Wei (王军威), Zeng Cai-Bin (曾才斌 ). Chin. Phys. B, 2012, 21(11): 110206.
[11] Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique
Feng Yi-Fu (冯毅夫), Zhang Qing-Ling (张庆灵), Feng De-Zhi (冯德志). Chin. Phys. B, 2012, 21(10): 100701.
[12] Robust stability analysis of Takagi–Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays
M. Syed Ali . Chin. Phys. B, 2011, 20(8): 080201.
[13] A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control
Wang Jun-Wei(王军威), Ma Qing-Hua(马庆华), and Zeng Li(曾丽) . Chin. Phys. B, 2011, 20(8): 080506.
[14] Linear matrix inequality approach for robust stability analysis for stochastic neural networks with time-varying delay
S. Lakshmanan and P. Balasubramaniam. Chin. Phys. B, 2011, 20(4): 040204.
[15] New synchronization analysis for complex networks with variable delays
Zhang Hua-Guang(张化光), Gong Da-Wei(宫大为), and Wang Zhan-Shan(王占山) . Chin. Phys. B, 2011, 20(4): 040512.
No Suggested Reading articles found!