Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070401    DOI: 10.1088/1674-1056/20/7/070401
GENERAL Prev   Next  

A note on teleparallel Killing vector fields in Bianchi type VIII and IX space–times in teleparallel theory of gravitation

Ghulam Shabbira)†, Amjad Alib), and Suhail Khana)
a Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Swabi, Khyber Pukhtoonkhwa, Pakistan; b Department of Basic Sciences, University of Engineering and Technology, Peshawar, Khyber Pukhtoonkhwa, Pakistan
Abstract  In this paper we classify Bianchi type VIII and IX space—times according to their teleparallel Killing vector fields in the teleparallel theory of gravitation by using a direct integration technique. It turns out that the dimensions of the teleparallel Killing vector fields are either 4 or 5. From the above study we have shown that the Killing vector fields for Bianchi type VIII and IX space—times in the context of teleparallel theory are different from that in general relativity.
Keywords:  Weitzenb?ck geometry      teleparallel theory of gravitation      conservation laws   
Received:  10 December 2010      Revised:  26 January 2011      Accepted manuscript online: 
PACS:  04.20.-q (Classical general relativity)  
  04.20.Jb (Exact solutions)  
  11.30.-j (Symmetry and conservation laws)  

Cite this article: 

Ghulam Shabbir, Amjad Ali, and Suhail Khan A note on teleparallel Killing vector fields in Bianchi type VIII and IX space–times in teleparallel theory of gravitation 2011 Chin. Phys. B 20 070401

[1] Bokhari A H and Qadir A 1990 J. Math. Phys. 31 1463
[2] Shabbir G and Mehmood A B 2007 Mod. Phys. Lett. A 22 807
[3] Feroz T, Qadir A and Ziad M 2001 J. Math. Phys. 42 4947
[4] Hall G S 2004 Symmetries and Curvature Structure in General Relativity (Singapore: World Scientific)
[5] Sharif M and Amir M J 2008 Mod. Phys. Lett. A 23 963
[6] Shabbir G and Khan S 2010 Mod. Phys. Lett. A 25 55
[7] Shabbir G and Khan S 2010 Mod. Phys. Lett. A 25 2145
[8] Shabbir G and Khan S 2010 Commun. Theor. Phys. 54 469
[9] Shabbir G and Khan S 2010 Mod. Phys. Lett. A 25 525
[10] Shabbir G and khan S 2010 Mod. Phys. Lett. A 25 1733
[11] Stephani H, Kramer D, MacCallum M A H, Hoenselears C and Herlt E 2003 Exact Solutions of Einstein's Field Equations (Cambridge: Cambridge University Press)
[12] Shabbir G and Khan S 2010 Commun. Theor. Phys. 54 675
[13] Weitzenböck R 1923 Invarianten Theorie (Gronningen: Noordhoft)
[14] Aldrovandi R and Pereira J G 1995 An Introduction to Geometrical Physics (Singapore: World Scientific)
[15] Sauer T 2006 Historica Mathematica 33 399
[16] Harvey A, Schucking E and Surowitz E J 2005 arXiv: gr-qc/0508125v1
[17] Krisch J P and Glass E N 2009 arXiv: gr-qc/0908.0354v1
[18] Nashed G G L 2009 arXiv: gr-qc/0910.5124v1
[19] Aldrovandi R and Pereira J G 2001 An Introduction to Gravitation Theory (preprint)
[20] Shabbir G, Ali A and Ramzan M 2010 Grav. Cosmol. 16 61
[1] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[2] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[3] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[4] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[5] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[6] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[7] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin (王鑫), Chen Yong (陈勇), Dong Zhong-Zhou (董仲周). Chin. Phys. B, 2014, 23(1): 010201.
[8] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民). Chin. Phys. B, 2013, 22(7): 070201.
[9] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[10] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[11] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元). Chin. Phys. B, 2012, 21(9): 090202.
[12] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng(王鹏), Xue Yun(薛纭), and Liu Yu-Lu(刘宇陆) . Chin. Phys. B, 2012, 21(7): 070203.
[13] An extension of the modified Sawada–Kotera equation and conservation laws
He Guo-Liang(何国亮) and Geng Xian-Guo(耿献国) . Chin. Phys. B, 2012, 21(7): 070205.
[14] Conservation laws for variable coefficient nonlinear wave equations with power nonlinearities
Huang Ding-Jiang(黄定江), Zhou Shui-Geng(周水庚), and Yang Qin-Min(杨勤民). Chin. Phys. B, 2011, 20(7): 070202.
[15] The symmetries in the Maxwell-Chern-Simons theory coupled to matter fields
Jiang Jin-Huan (江金环), Liu Yun (刘赟), Li Zi-Ping (李子平). Chin. Phys. B, 2004, 13(2): 153-158.
No Suggested Reading articles found!