Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070307    DOI: 10.1088/1674-1056/20/7/070307
GENERAL Prev   Next  

Landau damping of collective mode in a quasi-two-dimensional repulsive Bose–Einstein condensate

Ma Xiao-Dong(马晓栋), Yang Zhan-Jin(杨占金), Lu Jun-Zhe(路俊哲), and Wei Wei(魏蔚)
College of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi 830054, China
Abstract  We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose—Einstein condensate by using the self-consistent time-dependent Hatree—Fock—Bogoliubov approximation and a complete and orthogonal eigenfunction set for the elementary excitation of the system. We calculate the three-mode coupling matrix element between the collective mode and the thermal excited quasi-particles and the Landau damping rate of the collective mode. We discuss the dependence of the Landau damping on temperature, on atom number in the condensate, on transverse trapping frequency and on the length of the condensate. The energy width of the collective mode is taken into account in our calculation. With little approximation, our theoretic calculation results agree well with the experimental ones and are helpful for deducing the damping mechanics and the inter-particle interaction.
Keywords:  Bose—Einstein condensate      Landau damping      Hatree—Fock—Bogoliubov approximation      energy level width  
Received:  13 January 2011      Revised:  15 February 2011      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
  67.10.Db (Fermion degeneracy)  

Cite this article: 

Ma Xiao-Dong(马晓栋), Yang Zhan-Jin(杨占金), Lu Jun-Zhe(路俊哲), and Wei Wei(魏蔚) Landau damping of collective mode in a quasi-two-dimensional repulsive Bose–Einstein condensate 2011 Chin. Phys. B 20 070307

[1] Pethick C J and Smith H 2002 Bose—Einstein Condensation in Dilute Gases (1st ed) (Cambridge: Cambridge University Press) pp. 154—157, 171—178, 225—230
[2] Stringari S 1996 Phys. Rev. Lett. 77 2360
[3] Fetter A L 1996 Phys. Rev. A 53 4245
[4] Ruprecht P A, Edwards M, Burnett K and Clark C W 1996 Phys. Rev. A 54 4178
[5] Dalfovo F, Minniti C and Pitaevskii L P 1997 Phys. Rev. A 56 4855
[6] Morgan S A, Choi S, Burnett K and Edwards M 1998 Phys. Rev. A 57 3818
[7] Hechenblaikner G, Marag`o O M, Hodby E, Arlt J, Hopkins S and Foot C J 2000 Phys. Rev. Lett. 85 692
[8] Hodby E, Marag`o O M, Hechenblaikner G and Foot C J Phys. Rev. Lett. 86 2196
[9] Marag`o O M, Hopkins S A, Arlt J, Hodby E, Hechenblaikne G and Foot C J 2000 Phys. Rev. Lett. 84 2056
[10] Khawaja U A and Stoof H T C 2001 Phys. Rev. A 65 013605
[11] Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402
[12] Xie Z W and Liu W M 2004 Phys. Rev. A 70 045602
[13] Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408
[14] Huang G, Szeftel J and Zhu S 2002 Phys. Rev. A 65 053605
[15] Yin J P, Gao W J, Wang H F, Long Q and Wang Y Z 2002 Chin. Phys. B 11 1157
[16] Zheng J R 1999 Chin. Phys. 8 721
[17] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[18] Jin D S, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1996 Phys. Rev. Lett. 77 420
[19] Jin D S, Matthews M R, Ensher J R, Wieman C E and Cornell E A 1997 Phys. Rev. Lett. 78 764
[20] Chevy F, Bretin V, Rosenbusch P, Madison K W and Dalibard J 2002 Phys. Rev. Lett. 88 250402
[21] Mewes M O, Andrews R, Druten N J V, Kurn D M, Durfee D S and Ketterle W 1996 Phys. Rev. Lett. 77 988
[22] Stamper-Kurn D M, Miesner H J, Chikkatur A P, Inouye S, Stenger J and Ketterle W 1998 Phys. Rev. Lett. 81 2194
[23] Onofrio R, Durfee D S, Raman C, Köhl M, Kuklewicz C E and Ketterle W 2000 Phys. Rev. Lett. 84 810
[24] Marag`o O, Hechenblaikner G, Hodby E and Foot C 2001 Phys. Rev. Lett. 86 3938
[25] Giorgini S 1998 Phys. Rev. A 57 2949
[26] Giorgini S 2000 Phys. Rev. A 61 063615
[27] Guilleumas M and Pitaevskii L P 1999 Phys. Rev. A 61 013602
[28] Guilleumas M and Pitaevskii L P 2003 Phys. Rev. A 67 053607
[29] Pitaevskii L P and Stringari S 1997 Phys. Lett. A 235 398
[30] Fedichev P O, Shlyapnikov G V and Walraven J T M 1998 Phys. Rev. Lett. 80 2269
[31] Zaremba E, Griffin A and Nikuni T 1998 Phys. Rev. A 57 4695
[32] Jackson B and Zaremba E 2002 Phys. Rev. Lett. 89 150402
[33] Reidl J, Csord'as A, Graham R and Sz'epfalusy P 2000 Phys. Rev. A 61 043606
[34] Morgan S A, Rusch M, Hutchinson D A W and Burnett K 2003 Phys. Rev. Lett. 91 250403
[35] Morgan S A 2004 Phys. Rev. A 69 023609
[36] Tsuchiya S and Griffin A 2005 Phys. Rev. A 72 053621
[37] Ma X, Zhou Y, Ma Y L and Huang G 2006 Chin. Phys. 15 1871
[38] Ma X, Ma Y L and Huang G 2007 Chin. Phys. Lett. 24 616
[39] Ma X, Ma Y L and Huang G 2007 Phys. Rev. A 75 013628
[40] Ma Y L and Chui S T 2002 Phys. Rev. A 65 053610
[41] Ma Y L and Chui S T 2002 Phys. Rev. A 66 053611
[42] Hu B, Huang G and Ma Y L 2004 Phys. Rev. A 69 063608
[43] Ma Y L, Huang G and Hu B 2005 Phys. Rev. A 71 062504
[1] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[2] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[3] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[4] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
[5] Landau damping in a bounded magnetized plasma column
H. Zakeri-Khatir, F. M. Aghamir. Chin. Phys. B, 2015, 24(2): 025201.
[6] Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate
Rahmut Arzigul (阿孜古丽·热合木提), Peng Sheng-Qiang (彭胜强), Ma Xiao-Dong (马晓栋). Chin. Phys. B, 2014, 23(9): 090311.
[7] Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations
M. N. S. Qureshi, S. Sehar, H. A. Shah, J. B. Cao. Chin. Phys. B, 2013, 22(3): 035201.
[8] Nonlinear Landau damping of high frequency waves in non-Maxwellian plasmas
M. N. S. Qureshi, Sumbul Sehar, J. K. Shi, H. A. Shah. Chin. Phys. B, 2013, 22(11): 115201.
[9] Landau damping of longitudinal oscillation in ultra- relativistic plasmas with nonextensive distribution
Liu San-Qiu (刘三秋), Xiao-Chang (陈小昌). Chin. Phys. B, 2011, 20(6): 065201.
[10] Landau damping of collective modes in a harmonically trapped Bose--Einstein condensate
Ma Xiao-Dong(马晓栋), Zhou Yu(周昱), Ma Yong-Li(马永利), and Huang Guo-Xiang(黄国翔). Chin. Phys. B, 2006, 15(8): 1871-1878.
No Suggested Reading articles found!