Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070304    DOI: 10.1088/1674-1056/20/7/070304
GENERAL Prev   Next  

Avoiding the decay of entanglement for coupling two-qubit system interacting with a non-Markov environment

Ji Ying-Hua(嵇英华)a)b)† , Liu Yong-Mei(刘咏梅)a)c), and Wang Zi-Sheng(王资生) a)b)
College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; Key Laboratory of Optoelectronic and Telecommunication of Jiangxi, Nanchang 330022, China; College of Mathematics and Information Science of Jiangxi Normal University, Nanchang 330022, China
Abstract  The entanglement evolution of the coupled qubits interacting with a non-Markov environment is investigated in terms of concurrence. The results show that the entanglement of the quantum systems depends not only on the initial state of the system but also on the coupling between the qubit and the environment. For the initial state (|00〉± | 11〉) /√2, the coupled qubits will always been in the maximum entangled state under an asymmetric coupling. For the initial state (|01〉± | 10〉) /√2, in contrast, the entangling degree of the coupled qubits is always equal to unity and does not depend on the evolving time under the symmetric coupling. We find that the stronger the interaction between the qubits is, the better the struggle against the entanglement sudden death is.
Keywords:  entanglement      symmetry      non-Markov process      concurrence  
Received:  22 September 2010      Revised:  13 October 2010      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  

Cite this article: 

Ji Ying-Hua(嵇英华), Liu Yong-Mei(刘咏梅), and Wang Zi-Sheng(王资生) Avoiding the decay of entanglement for coupling two-qubit system interacting with a non-Markov environment 2011 Chin. Phys. B 20 070304

[1] Wang Z S, Kwek L C, Lai C H and Oh C H 2005 Eur. Phys. J. D 33 285
[2] Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
[3] Yang C P and Han S 2006 Phys. Rev. A 73 032317
[4] Wang Z S 2009 Phys. Rev. A 79 024304
[5] Wang Z S, Liou G Q and Ji Y H 2009 Phys. Rev. A 79 054301
[6] Chen Z Q, Wang J Q, Li X L, Ji Y H, Zhang B R, Jiang Y Y and Wang Z S 2009 Int. J. Theor. Phys. 48 2904
[7] Jiang D Y, Wu R, Li S S and Wang Z S 2009 Int. J. Theor. Phys. 48 2297
[8] Cai X H, Guo J R, Nie J J and Jia J P 2006 Chin. Phys. 15 488
[9] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[10] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[11] Yu T and Eberly J H 2009 Science 323 598
[12] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[13] Paz J P and Roncaglia A J 2008 Phys. Rev. Lett. 100 220401
[14] Abdel-Aty M and Yu T 2009 J. Phys. B. 41 235503
[15] Kubo R, Toda M and Hashitsume N 1985 Statistical Physics II (Berlin: Springer)
[16] Ban M 2010 Eur. Phys. J. D 58 415
[17] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 80 012104
[18] Scala M, Militello B, Messina A, Piilo J and Suominen K A 2008 Phys. Rev. A 77 043827
[19] Ban M 2009 Phys. Rev. A 80 032114
[20] Bellomo B, Lo Franco R and Compagno G 2008 Phys. Rev. A 77 032342
[21] Das S and Agarwal G S 2009 J. Phys. B 42 205502
[22] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[3] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[4] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[5] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[6] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[7] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[8] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[9] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[10] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[11] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[12] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[13] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[14] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[15] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
No Suggested Reading articles found!