Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070303    DOI: 10.1088/1674-1056/20/7/070303
GENERAL Prev   Next  

Entanglement dynamics of a moving multi-photon Jaynes–Cummings model in mixed states

Tan Lei(谭磊)a)b)†, Zhang Yu-Qing(张玉青)a), and Zhu Zhong-Hua(朱中华)b)
a Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China; b Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  Using the algebraic dynamical method, the entanglement dynamics of an atom-field bipartite system in a mixed state is investigated. The atomic center-of-mass motion and the field-mode structure are also included in this system. We find that the values of the detuning and the average photon number are larger, the amplitude of the entanglement is smaller, but its period does not increase accordingly. Moreover, with the increase of the field-mode structure parameter and the transition photon number, the amplitude of the entanglement varies slightly while the oscillation becomes more and more fast. Interestingly, a damping evolution of the entanglement appears when both the detuning and the atomic motion are considered simultaneously.
Keywords:  algebraic dynamical method      entanglement      mixed state  
Received:  31 October 2010      Revised:  21 March 2011      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Bg (Entanglement production and manipulation)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10704031) and the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2010-75).

Cite this article: 

Tan Lei(谭磊), Zhang Yu-Qing(张玉青), and Zhu Zhong-Hua(朱中华) Entanglement dynamics of a moving multi-photon Jaynes–Cummings model in mixed states 2011 Chin. Phys. B 20 070303

[1] Vaglica A and Vetri G 2007 Phys. Rev. A 75 062120
[2] Wang Z J, Zhang K and Fan C Y 2010 Chin. Phys. B 19 110311
[3] Ficek Z and Tanas R 2006 Phys. Rev. A 74 024304
[4] Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L and Zhang Z M 2010 Chin. Phys. B 19 094207
[5] Zhang D Y, Tang S Q, Xie L J, Zhan X G, Chen Y H and Gao F 2010 Chin. Phys. B 19 100313
[6] Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[7] Zhang Q and Zhang E Y 2002 Acta Phys. Sin. 51 1684
[8] Ye L and Guo G C 2002 Chin. Phys. 11 996
[9] Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[10] Metwally N, Abdelaty M and Obada A S F 2004 Chaos, Solitons and Fractals 22 529
[11] Wang X W, Liu X and Fang M F 2007 Chin. Phys. 16 1215
[12] Ekert A K 1991 Phys. Rev. Lett. 67 661
[13] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[14] Yang M, Song W and Cao Z L 2005 Phys. Rev. A 71 034312
[15] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[16] Bennett C H, Shor P W, Smolin J A and Thapliyal A V 1999 Phys. Rev. Lett. 83 3081
[17] Chen L B, Jin R B and Lu H 2009 Chin. Phys. B 18 30
[18] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[19] Bennett C H, Divincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[20] Popescu S and Rohrlich D 1997 Phys. Rev. A 56 3319(R)
[21] Peres A 1996 Phys. Rev. Lett. 77 1413
[22] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[23] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[24] Vidal G 2000 J. Mod. Opt. 47 355
[25] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[26] Zhou L, Song H S and Li C 2002 J. Opt. B 4 425
[27] Obada A S F, Hessian H A and Mohamed A B A 2007 Opt. Commun. 280 230
[28] Akhtarshenas S J and Farsi M 2007 Phys. Scr. 75 608
[29] Zhang J S and Xu J B 2009 Opt. Commun. 282 2543
[30] Xu H S and Xu J B 2009 Chin. Phys. Lett. 26 010301
[31] Zhang J S and Xu J B 2009 Chin. Phys. B 18 2288
[32] Yonddotac M, Yu T and Eberly J H 2007 J. Phys. B 40 S45
[33] Dur W and Briegel H J 2007 Rep. Prog. Phys. 70 1381
[34] Wang S J, Li F L and Weiguny A 1993 Phys. Lett. A 180 189
[35] Jie Q L, Wang S J and Wei L F 1997 J. Phys. A 30 6147
[36] Schlicher R R 1989 Opt. Commun. 70 97
[37] Verstraete F and Verschelde H 2003 Phys. Rev. Lett. 90 097901
[38] Yoddotnac M, Yu T and Eberly J H 2006 J. Phys. B 39 S621
[39] Yan X Q 2009 Chaos, Solitons and Fractals 41 1645
[40] Schlosshauer M, Hines A P and Milburn G J 2008 Phys. Rev. A 77 022111
[41] Cummings N I and Hu B L 2008 Phys. Rev. A 77 053823
[42] Zidan N A, Abdel-Aty M and Obada A S F 2002 Chaos, Solitons and Fractals 13 1421
[43] Tumminello M, Vaglica A and Vetri G 2004 Euro. Phys. Lett. 65 785
[44] Vaglica A and Vetri G 2007 Phys. Rev. A 75 062120
[45] Yan X Q, Shao B and Zou J 2008 Chaos, Solitons and Fractals 37 835
[46] Abdel Aty M, Furuichi S and Obada A S F 2002 J. Opt. B 4 37
[47] Joshi A 2010 Opt. Commun. 283 2166
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!