Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 066104    DOI: 10.1088/1674-1056/20/6/066104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Sb complexes and Zn interstitials in Sb-implanted ZnO epitaxial films

Liu Yao-Ping (刘尧平)a, Ying Min-Ju (英敏菊)bMei Zeng-Xia (梅增霞)a, Li Jun-Qiang (李俊强)a, Du Xiao-Long (杜小龙)a, A. Yu. Kuznetsovc
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China; c Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo, Norway
Abstract  In the present work, post-annealing is adopted to investigate the formation and the correlation of Sb complexes and Zn interstitials in Sb-ion implanted ZnO films, by using Raman scattering technique and electrical characterizations. The damage of Zn sublattice, produced by ion bombardment process is discerned from the unrecovered E2 (L) peak in annealed high Sb+ dose implanted samples. It is suggested that the Zn sublattice may be strongly affected by the introduction of Sb dopant because of the formation of SbZn-2VZn complex acceptor. The appearance of a new peak at 510 cm-1 in the annealed high dose Sb+ implanted samples is speculated to result from (Zn interstitials-O interstitials) Zni-Oi complex, which is in a good accordance with the electrical measurement. The p-type ZnO is difficult to obtain from the Sb + implantation, however, which can be realized by in-situ Sb doping with proper growth conditions instead.
Keywords:  ZnO      ion implantation      Raman spectra      molecular beam epitaxy  
Received:  03 December 2010      Revised:  18 January 2011      Accepted manuscript online: 
PACS:  61.72.U- (Doping and impurity implantation)  
  61.72.uj (III-V and II-VI semiconductors)  
  78.30.-j (Infrared and Raman spectra)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076007 and 50532090), the National Basic Research Program of China (Grant Nos. 2007CB936203, 2009CB929400, 2009AA033101, and 2011CB302002), the Knowledge Innovation Project of the Chinese Academy of Sciences, and the Research Council of Norway through the FRINAT "Understanding ZnO" Project.

Cite this article: 

Liu Yao-Ping (刘尧平), Ying Min-Ju (英敏菊), Mei Zeng-Xia (梅增霞), Li Jun-Qiang (李俊强), Du Xiao-Long (杜小龙), A. Yu. Kuznetsov Sb complexes and Zn interstitials in Sb-implanted ZnO epitaxial films 2011 Chin. Phys. B 20 066104

[1] Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H and Segawa Y 1998 Appl. Phys. Lett. 72 3270
[2] Bagnall D M, Chen Y F, Zhu Z, Tao T, Koyama S, Shen M Y and Goto T 1997 Appl. Phys. Lett. 70 2230
[3] Reynolds D C, Look D C, Jogai B, Litton C W, Cantwell G and Harsch W C 1999 Phys. Rev. B 60 2340
[4] Neuvonen P T, Vines L, Kuznetsov A Yu, Svensson B G, Du X L, Tuomisto F and Hallén A 2009 Appl. Phys. Lett. 95 242111
[5] Dunlop L, Kursumovic A and MacManus-Driscoll J L 2008 Appl. Phys. Lett. 93 172111
[6] Wardle M G, Goss J P and Briddon P R 2005 Phys. Rev. B 71 155205
[7] Janotti A and van de Walle C G 2007 Phys. Rev. B 76 165202
[8] Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B 66 073202
[9] Mandalapu L J, Yang Z, Xiu F X, Zhao D T and Liu J L 2006 Appl. Phys. Lett. 88 092103
[10] Chu S, Olmedo M, Yang Z, Kong J Y and Liu J L 2008 Appl. Phys. Lett. 93 183106
[11] Limpijumnong S, Zhang S B, Wei S H and Park C H 2004 Phys. Rev. Lett. 92 155504
[12] Wahl U, Correia J G, Mendoncca T and Decoster S 2009 Appl. Phys. Lett. 94 261901
[13] Gu Q L, Ling C C, Brauer G, Anwand W, Skorupa W, Hsu Y F, Djurisic A B, Zhu C Y, Fung S and Lu L W 2008 Appl. Phys. Lett. 92 222109
[14] Braunstein G, Muraviev A, Saxena H, Dhere N, Richter V and Kalish R 2005 Appl. Phys. Lett. 87 192103
[15] Wang X N, Wang Y, Mei Z X, Dong J, Zeng Z Q, Yuan H T, Zhang T C, Du X L, Jia J F, Xue Q K, Zhang X N, Zhang Z, Li Z F and Lu W 2007 Appl. Phys. Lett. 90 151912
[16] Guo Y, Liu Y P, Li J Q, Zhang S L, Mei Z X and Du X L 2010 Chin. Phys. Lett. 27 067203
[17] özgür ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[18] Ke X W, Shan F K, Park Y S, Wang Y J, Zhang W Z, Kang T W and Fu D J 2007 Surf. Coat. Technol. 201 6797
[19] Artus L, Cusco R, Alarcon-Llado E, Gonzalez-Diaz G, Martil I, Jimenez J, Wang B and Callahan M 2007 Appl. Phys. Lett. 90 181911
[20] Wang J B, Zhong H M, Li Z F and Lu W 2006 Appl. Phys. Lett. 88 101913
[21] Cusco R, Jimenez J, Wang B and Callahan M J 2007 Phys. Rev. B 75 165202
[22] Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M and Grundmann M 2003 Appl. Phys. Lett. 83 1974
[23] Manj'on F J, Mar'hi B, Serrano J and Romero A H 2005 J. Appl. Phys. 97 053516
[24] Friedrich F, Gluba M A and Nicke N H 2009 Appl. Phys. Lett. 95 141903
[25] Look D C, Hemsky J W and Sizelove J R 1999 Phys. Rev. Lett. 82 2552
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[6] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[9] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[12] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[13] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[14] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[15] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
No Suggested Reading articles found!