Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 066101    DOI: 10.1088/1674-1056/20/6/066101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

In situ high-pressure X-ray diffraction experiments and ab initio calculations of Co2P

Zhang Qian(张倩), Wu Xiang(巫翔), and Qin Shan(秦善)
Key Laboratory of Orogenic Belts and Crustal Evolution of Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China
Abstract  In situ high-pressure experiments of Co2P are carried out by means of angle dispersive X-ray diffraction with diamond anvil cell technique. No phase transition is observed in the present pressure range up to 15 GPa at room temperature, even at high temperature and 15 GPa. Results of compression for Co2P are well presented by the second-order Birch-Murnaghan equation of state with V0 = 130.99(2) Å3 (1 Å=0.1 nm) and K0 = 160(3) GPa. Axial compressibilities are described by compressional modulus of the axis: Ka = 123(2) GPa, Kb = 167(8) GPa and Kc = 220(7) GPa. Theoretical calculations further support the experimental results and indicate that C23-type Co2P is stable at high pressure compared with the C22-type phase.
Keywords:  Co2P      ab initio      pressure-induced phase transition  
Received:  02 September 2010      Revised:  21 January 2011      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  91.60.Hg (Phase changes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 40972029 and 41072027).

Cite this article: 

Zhang Qian(张倩), Wu Xiang(巫翔), and Qin Shan(秦善) In situ high-pressure X-ray diffraction experiments and ab initio calculations of Co2P 2011 Chin. Phys. B 20 066101

[1] Severin L, Häggström L, Nordström L andersson Y and Johansson B 1995 J. Phys.: Condens. Matter 7 185
[2] Fujii S, Ishida S and Asano S 1988 J. Phys. F: Met. Phys. 18 971
[3] Cai J W, Luo H L and Zheng Q Q 1993 J. Phys.: Condens. Matter 5 9307
[4] Britvin S N, Rudashevsky N S, Krivovichev S V, Burns P C and Polekhovsky Y S 2002 Am. Mineral. 87 1245
[5] Dera P, Lavina B, Borkowski L A, Prakapenka V B, Sutton S R, Rivers M L, Downs R T, Boctor N Z and Prewitt C T 2008 Geophys. Res. Lett. 35 L10301
[6] Japel S, Prewitt C and Boctor N 2002 Am. Geophys. Union, Spring Meeting, Washington DC, May 2002, abstract M51A-02
[7] Dera P, Lavina B, Borkowski L A, Prakapenka V B, Sutton S R, Rivers M L, Downs R T, Boctor N Z and Prewitt C T 2009 J. Geophys. Res. 114 B03201
[8] Rundqvist S 1960 Acta Chem. Scand. 14 1961
[9] Parthé E, Gelato L, Chabot B, Penzo M, Cenzual K and Gladyshevskii R 1994 TYPIX; Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Vol. 3 (Berlin: Springer-Verlag) p. 1050
[10] Zemczuzny S, Schepelew J and Anorg Z 1909 Chem. 64 245
[11] De Vos K J, Welge W A J J, van der Steeg M G and Zijlstra H 1962 J. Appl. Phys. 33 1320
[12] Massalski T B, Okamoto H, Subramanian P R and Kacprzak L 1990 Binary Alloy Phase Diagrams 2nd edn. Vol. 2, ASM International, The Materials Information Society, p. 1217
[13] Ishida K and Nishizawa T 1990 Bull. Alloy Phase Diagrams 11 555
[14] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[15] Birch F 1986 J. Geophys. Res. 91 4949
[16] Dubrovinsky L, Glazyrin K, McCammon C, Narygina O, Greenberg E, Uebelhack S, Chumakoy A I, Pascarelli S, Prakapenka V, Bock J and Dubrovinskain N 2009 J. Synchrotron Rad. 16 737
[17] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2002 WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties revised edition June 2002, Prof. Dr. Karlheinz Schwarz, Technische Universität Wien, Institut für Physikalische und Theoretische Chemie, Getreidemarkt 9/156 A-1060 Wien/Austria
[18] Schwarz K, Blaha P and Madsen G K H 2002 Comput. Phys. Commun. 147 71
[19] Pickett W E, Erwin S C and Ethridge E C 1998 Phys. Rev. B 58 1201
[20] Skála R and Drábek M 2001 Bulletin Czech Geological Survey 76 209
[21] Birch F 1952 J. Geophys. Res. 95 227
[22] Angel R J 2001 Rev. Mineral. Geochem. 41 35
[23] Wu X and Qin S 2010 J. Phys.: Conf. Ser. 215 012110
[24] Scott H P, Kiefer B, Martin C D, Boateng N, Frank M R and Meng Y 2008 High Pressure Res. 28 375
[1] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[2] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[3] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[4] Ab initio study of dynamical properties of U-Nb alloy melt
Yong-Peng Shi(时永鹏), Ming-Feng Liu(刘鸣凤), Yun Chen(陈云), Wen-Lin Mo(莫文林), Dian-Zhong Li(李殿中), Tao Fa(法涛), Bin Bai(白彬), Xiao-Lin Wang(汪小琳), and Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2021, 30(12): 126105.
[5] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[6] Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics
Wan-Run Jiang(姜万润)†, Rui Wang(王瑞)†, Xue-Guang Ren(任雪光), Zhi-Yuan Zhang(张志远), Dan-Hui Li(李丹慧), and Zhi-Gang Wang(王志刚)‡. Chin. Phys. B, 2020, 29(10): 103101.
[7] Pressure-induced phase transition of B-type Y2O3
Qian Zhang(张倩), Xiang Wu(巫翔), Shan Qin(秦善). Chin. Phys. B, 2017, 26(9): 090703.
[8] Study of structural and magnetic properties of Fe80P9B11 amorphous alloy by ab initio molecular dynamic simulation
Li Zhu(朱力), Yin-Gang Wang(王寅岗), Cheng-Cheng Cao(曹成成), Yang Meng(孟洋). Chin. Phys. B, 2017, 26(6): 067101.
[9] Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide
Jun Li(李君), Shuang Xu(徐爽), Jin-Yong Zhang(张金咏), Li-Sheng Liu(刘立胜), Qi-Wen Liu(刘齐文), Wu-Chang She(佘武昌), Zheng-Yi Fu(傅正义). Chin. Phys. B, 2017, 26(4): 047101.
[10] Photo-induced athermal phase transitions of HgX (X= S, Se, Te) by ab initio study
Da-hua Ren(任达华), Xin-lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2016, 25(7): 076401.
[11] γ-and α-Ce phase diagram: First-principle calculation
Lin Zhang(张林), Ying-Hua Li(李英华), Xue-Mei Li(李雪梅), Zu-Gen Zhang(张祖根), Xiang-Ping Ye(叶想平), Ling-Cang Cai(蔡灵仓). Chin. Phys. B, 2016, 25(3): 033102.
[12] First-principle investigation on the thermodynamics of X2N2O (X= C, Si, Ge) compounds
Qing-Yun Xiong(熊青云), Qi-Xia Shen(沈启霞), Rui-Zi Li(李蕊子), Jiang Shen(申江), Fu-Yang Tian(田付阳). Chin. Phys. B, 2016, 25(2): 026501.
[13] Elastic properties and electronic structures of lanthanide hexaborides
Duan Jie (段婕), Zhou Tong (周彤), Zhang Li (张莉), Du Ji-Guang (杜际广), Jiang Gang (蒋刚), Wang Hong-Bin (王宏斌). Chin. Phys. B, 2015, 24(9): 096201.
[14] Defect stability in thorium monocarbide: An ab initio study
Wang Chang-Ying (王昌英), Han Han (韩晗), Shao Kuan (邵宽), Cheng Cheng (程诚), Huai Ping (怀平). Chin. Phys. B, 2015, 24(9): 097101.
[15] Formation and dissociation of protonated cytosine–cytosine base pairs in i-motifs by ab initio quantum chemical calculations
Zhang Xiao-Hu (张小虎), Li Ming (黎明), Wang Yan-Ting (王延颋), Ouyang Zhong-Can (欧阳钟灿). Chin. Phys. B, 2014, 23(2): 020702.
No Suggested Reading articles found!